Home
Class 12
MATHS
intsqrt(5+x^(10))/x^(16)dx is equal to...

`intsqrt(5+x^(10))/x^(16)dx` is equal to

A

`-1/75(1+5/x^(10))+c`

B

`-1/50(1+5/x^(10))^(3/2)+c`

C

`-1/50(1+5/x^(10))^(1/2)+c`

D

`-1/75(1+5/x^(10))^(3/2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sqrt{5 + x^{10}}}{x^{16}} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{5 + x^{10}}}{x^{16}} \, dx \] ### Step 2: Factor out \(x^{10}\) We can factor \(x^{10}\) out of the square root: \[ I = \int \frac{\sqrt{x^{10}(1 + \frac{5}{x^{10}})}}{x^{16}} \, dx \] This simplifies to: \[ I = \int \frac{x^{5}\sqrt{1 + \frac{5}{x^{10}}}}{x^{16}} \, dx = \int \frac{\sqrt{1 + \frac{5}{x^{10}}}}{x^{11}} \, dx \] ### Step 3: Substitute Let \(u = 1 + \frac{5}{x^{10}}\). Then, we differentiate \(u\) with respect to \(x\): \[ du = -\frac{50}{x^{11}} \, dx \quad \Rightarrow \quad dx = -\frac{x^{11}}{50} \, du \] ### Step 4: Substitute in the Integral Now we substitute \(u\) and \(dx\) into the integral: \[ I = \int \sqrt{u} \left(-\frac{x^{11}}{50}\right) \cdot \frac{1}{x^{11}} \, du = -\frac{1}{50} \int \sqrt{u} \, du \] ### Step 5: Integrate Now we integrate \(\sqrt{u}\): \[ -\frac{1}{50} \int u^{1/2} \, du = -\frac{1}{50} \cdot \frac{u^{3/2}}{3/2} = -\frac{2}{150} u^{3/2} = -\frac{1}{75} u^{3/2} \] ### Step 6: Substitute Back Now we substitute back \(u = 1 + \frac{5}{x^{10}}\): \[ I = -\frac{1}{75} \left(1 + \frac{5}{x^{10}}\right)^{3/2} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sqrt{5 + x^{10}}}{x^{16}} \, dx = -\frac{1}{75} \left(1 + \frac{5}{x^{10}}\right)^{3/2} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

intsqrt(2x-x^(2))dx

intsqrt(2x^(2)-3)dx

Knowledge Check

  • intsqrt((x)/(a^(3)-x^(3))) dx is equal to

    A
    `(2)/(3)cos^(-1)((x^(2)//3)/(a^(2)//3))+c`
    B
    `(2)/(3)sin^(-1)((x^(2)//3)/(a^(2)//3))+c`
    C
    `(2)/(3)tan^(-1)((x^(2)//3)/(a^(2)//3))+c`
    D
    `(2)/(3)sin^(-1)((x^(2)//3)/(a^(2)//3))+c`
  • intsqrt((x)/(1-x^(3)))dx is equal to

    A
    `(2)/(3)sin^(-1)(x^(2//3))+C`
    B
    `(3)/(2)sin^(-1)(x^(2//3))+C`
    C
    `(3)/(2)sin^(-1)(x^(2//3))+C`
    D
    `(2)/(3)sin^(-1)(x^(2//3))+C`
  • Similar Questions

    Explore conceptually related problems

    intsqrt(3x^(2)+4)dx

    intsqrt(4-9x^(2))dx

    intsqrt(x^(2)+5)dx

    intsqrt(x^(2)-5)dx

    intsqrt(x/(1+x))dx

    intsqrt(x^(2)+x)dx