Home
Class 12
MATHS
Let I(1)=int(0)^(1)(|lnx|)/(x^(2)+4x+1)d...

Let `I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx` and `I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx`, then

A

`I_(1)=I_(2)`

B

`I_(1) gt I_(2)`

C

`I_(1)+I_(2)=0`

D

`I_(1)=2I_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the integrals \( I_1 \) and \( I_2 \) defined as: \[ I_1 = \int_0^1 \frac{|\ln x|}{x^2 + 4x + 1} \, dx \] \[ I_2 = \int_1^\infty \frac{\ln x}{x^2 + 4x + 1} \, dx \] ### Step 1: Simplifying \( I_1 \) We first rewrite \( I_1 \) using a substitution. Let \( x = \frac{1}{t} \), then \( dx = -\frac{1}{t^2} dt \). The limits change as follows: - When \( x = 0 \), \( t \to \infty \) - When \( x = 1 \), \( t = 1 \) Thus, we can rewrite \( I_1 \): \[ I_1 = \int_\infty^1 \frac{|\ln(\frac{1}{t})|}{(\frac{1}{t})^2 + 4(\frac{1}{t}) + 1} \left(-\frac{1}{t^2}\right) dt \] ### Step 2: Simplifying the integrand Now, we simplify the integrand: \[ |\ln(\frac{1}{t})| = -\ln(t) \quad \text{(since \( \ln(\frac{1}{t}) = -\ln(t) \))} \] The denominator becomes: \[ \left(\frac{1}{t}\right)^2 + 4\left(\frac{1}{t}\right) + 1 = \frac{1 + 4t + t^2}{t^2} \] Thus, we have: \[ I_1 = \int_\infty^1 \frac{-\ln(t)}{\frac{1 + 4t + t^2}{t^2}} \left(-\frac{1}{t^2}\right) dt \] This simplifies to: \[ I_1 = \int_1^\infty \frac{\ln(t)}{1 + 4t + t^2} dt \] ### Step 3: Comparing \( I_1 \) and \( I_2 \) Now we see that: \[ I_1 = \int_1^\infty \frac{\ln(t)}{1 + 4t + t^2} dt \] And we have: \[ I_2 = \int_1^\infty \frac{\ln x}{x^2 + 4x + 1} dx \] Notice that \( 1 + 4t + t^2 = t^2 + 4t + 1 \). Therefore: \[ I_1 = I_2 \] ### Conclusion Thus, we conclude that: \[ I_1 = I_2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 19

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 25

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If l_(1)=int_(0)^(1)(dx)/(sqrt(1+x^(2))) and I_(2)=int_(0)^(1)(dx)/(|x|) then

Let I_(1)=int_(0)^(1)(5^(x))/(x+1)dx and I_(2)=int_(0)^(1)(x^(2))/(5^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2))=

Knowledge Check

  • int_(0)^(1)(1)/(x^(2)+4x+5)dx =

    A
    `tan^(-1)((1)/(7))`
    B
    `log((1)/(7))`
    C
    `sin^(-1)((1)/(7))`
    D
    log 7
  • Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

    A
    `I_(1) gt I_(2)`
    B
    `I_(2)gt I_(1)`
    C
    `I_(1)=I_(2)`
    D
    `I_(2) gt 2I_(2)`
  • Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

    A
    `I_(1)=2I_(2)`
    B
    `I_(2)=2I_(1)`
    C
    `I_(1)=I_(2)`
    D
    `I_(1)=-I_(2)`
  • Similar Questions

    Explore conceptually related problems

    I=int_(-oo)^(1)(1)/(x^(2))dx

    int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

    int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

    If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

    Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is