Home
Class 12
MATHS
If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/...

If `y=(1+x)^y+sin^-1(sin^2x)` , then `(dy)/(dx)` at x = 0 is

A

0

B

In 2

C

1

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = 0\) for the equation \(y = (1+x)^y + \sin^{-1}(\sin^2 x)\), we will follow these steps: ### Step 1: Evaluate \(y\) at \(x = 0\) First, we substitute \(x = 0\) into the equation to find the value of \(y\). \[ y = (1+0)^y + \sin^{-1}(\sin^2(0)) \] \[ y = 1^y + \sin^{-1}(0) \] \[ y = 1 + 0 \] \[ y = 1 \] ### Step 2: Differentiate both sides with respect to \(x\) Now we differentiate the equation \(y = (1+x)^y + \sin^{-1}(\sin^2 x)\) with respect to \(x\). Using implicit differentiation: \[ \frac{dy}{dx} = \frac{d}{dx}[(1+x)^y] + \frac{d}{dx}[\sin^{-1}(\sin^2 x)] \] ### Step 3: Differentiate \((1+x)^y\) Using the chain rule and product rule: \[ \frac{d}{dx}[(1+x)^y] = y(1+x)^{y-1} \cdot \frac{d}{dx}(1+x) + (1+x)^y \cdot \frac{dy}{dx} \cdot \ln(1+x) \] \[ = y(1+x)^{y-1} + (1+x)^y \ln(1+x) \frac{dy}{dx} \] ### Step 4: Differentiate \(\sin^{-1}(\sin^2 x)\) Using the chain rule: \[ \frac{d}{dx}[\sin^{-1}(\sin^2 x)] = \frac{1}{\sqrt{1 - \sin^4 x}} \cdot 2\sin x \cos x \] \[ = \frac{2\sin x \cos x}{\sqrt{1 - \sin^4 x}} \] ### Step 5: Combine the derivatives Now we combine the derivatives: \[ \frac{dy}{dx} = y(1+x)^{y-1} + (1+x)^y \ln(1+x) \frac{dy}{dx} + \frac{2\sin x \cos x}{\sqrt{1 - \sin^4 x}} \] ### Step 6: Solve for \(\frac{dy}{dx}\) Rearranging gives: \[ \frac{dy}{dx} - (1+x)^y \ln(1+x) \frac{dy}{dx} = y(1+x)^{y-1} + \frac{2\sin x \cos x}{\sqrt{1 - \sin^4 x}} \] \[ \frac{dy}{dx}(1 - (1+x)^y \ln(1+x)) = y(1+x)^{y-1} + \frac{2\sin x \cos x}{\sqrt{1 - \sin^4 x}} \] \[ \frac{dy}{dx} = \frac{y(1+x)^{y-1} + \frac{2\sin x \cos x}{\sqrt{1 - \sin^4 x}}}{1 - (1+x)^y \ln(1+x)} \] ### Step 7: Substitute \(x = 0\) into the derivative Now we substitute \(x = 0\) into the expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{1 \cdot 1^{1-1} + \frac{2 \cdot 0 \cdot 1}{\sqrt{1 - 0}}}{1 - 1 \cdot \ln(1)} \] \[ = \frac{1 + 0}{1 - 0} \] \[ = 1 \] ### Final Answer Thus, \(\frac{dy}{dx}\) at \(x = 0\) is \(1\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 22

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)(sin x), then (dy)/(dx) at x=(pi)/(2) is

If y=sin(2sin^(-1)x) then (dy)/(dx)=

Knowledge Check

  • If y=sin(2 sin^(-1)x) , then (dy)/(dx) =

    A
    `(2-4x^(2))/sqrt(1-x^(2))`
    B
    `(2+4x^(2))/sqrt(1-x^(2))`
    C
    `(2-4x^(2))/sqrt(1+x^(2))`
    D
    `(2+4x^(2))/sqrt(1+x^(2))`
  • If y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =

    A
    ` ( -1)/( 1-sin x ) `
    B
    ` (1)/( 1-sin x) `
    C
    ` (-2)/( 1-sin x ) `
    D
    ` (2)/( 1-sin x ) `
  • If y=sin^(-1)(2^(x)),"then "dy/dx=

    A
    ` (2^(x)) /(sqrt(1-4)^(x))`
    B
    ` (2^(x)log2) /(sqrt(1-4)^(x))`
    C
    ` (2^(x)) /(sqrt(1-2)^(x))`
    D
    ` (2^(x)log2) /(sqrt(1-2)^(x))`
  • Similar Questions

    Explore conceptually related problems

    if y=tan(sin^(-1)x) then (dy)/(dx)

    y=sin ^(-1) (1-2x ^(2)),then (dy)/(dx)=

    if y=sin^(-1)x then (dy)/(dx) is

    If y=sin ^(-1) (2x^(2) -1) ,then (dy)/(dx)=

    If y = x^(2) " sin " (1)/(x) " then " (dy)/(dx) = ?