Home
Class 12
MATHS
If (1 + x)^(n) = C(0) + C(1)x + C(2) x^(...

If `(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n)`, then for n odd,
`C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2)` is equal to

A

`2^(2n-2)`

B

`2^(n)`

C

`((2n)!)/(2(n!)^(2))`

D

`((2n)!)/((n!)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems (COLLECTION OF BINOMIAL COEFFICIENT)|3 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems ( DIVISIBILITY CONCEPT & REMAINDER CONCEPT )|2 Videos
  • BINOMIAL THEOREM

    MOTION|Exercise Exercise - 2 (Level - I) Objective Problems ( NGT)|2 Videos
  • BASIC MATHEMATIC & LOGARITHM

    MOTION|Exercise Exercise - 4|4 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then for n odd ,C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+...+(-1)C_(n)^(2), is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

Knowledge Check

  • If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ... + C_(n) x^(n) , then value of C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + ... + (n + 1) C^(2)n is

    A
    `(2n+1)(""^(2n)C_(n))`
    B
    `(2n-1)(""^(2n)C_(n))`
    C
    `(n/2+1)(""^(2n)C_(n))`
    D
    `(1+n/2)(""^(2n-1)C_(n))`
  • If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

    A
    `2^(2n-2)`
    B
    `2^(n)`
    C
    `((2n)!)/(2(2!)1^(2))`
    D
    `((2n)!)/((n!)^(2))`
  • If (1+x)^(n) =C_(0) +C_(1)x +C_(2)x^(2) +…+C_(n)x^(n) , then C_(0) +3C_(1) +5C_(2)+ ….+ (2n+1)C_(n)=

    A
    `n.2^(n-1)`
    B
    `n.2^(n)`
    C
    `(n+1) 2^(n)`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

    If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

    If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

    If (1+x)^(n)= C_(0) + C_(1)x + C_(2) x^(2) + …. C_(n)x^(n) , then C_(0)- C_(1) + C_(2)-C_(3)+ ….+ (-1)^(n).C_(n) is equal to

    If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to