Home
Class 12
MATHS
sin^(2) A cos^(2)B + cos ^(2) A sin^(2) ...

`sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=`

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 B ( COMPOUNDS ANGLES )|106 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1 C ( MULTIPLE AND SUBMULTIPLE ANGLES )|118 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPEICAL TYPE QUESTIONS ) SET -4|20 Videos
  • TRIGONOMETRIC EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos

Similar Questions

Explore conceptually related problems

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

Evaluate the integerals. int (sin 2x)/(a cos ^(2) x + b sin ^(2)x)dx on I sub R \\ {x in R| a cos ^(2)x +b sin ^(2) x =0}.

Knowledge Check

  • (sin^(2)3A)/(sin^(2)A)-(cos^(2) 3A)/(cos^(2)A)=

    A
    `cos 2A`
    B
    `8 cos 2A `
    C
    `1//8 cos 2A `
    D
    none
  • If u= sqrt( a^(2) cos^(2) theta + b^(2) sin^(2) theta) + sqrt( a^(2) sin^(2) theta + b^(2) cos^(2) theta) , then the difference the maximum and minimum values of u^2 is given by

    A
    `2(a^(2) + b^(2) )`
    B
    `2 sqrt(a^(2) + b^(2) )`
    C
    `( a+b)^(2)`
    D
    `( a-b)^(2)`
  • (sin ^(2) A - sin ^(2) B)/( sin A cos A - sin B cos B) is equal to

    A
    `tna (A-B)`
    B
    `tan (A+B)`
    C
    `cot (A-B)`
    D
    `cot (A+B)`
  • Similar Questions

    Explore conceptually related problems

    If A+B+ C =pi , then prove that cos ^(2) (A/2)+ cos ^(2) (B/2) +cos ^(2) (C/2)=2(1+sin . (A)/(2) sin. (B)/(2) sin. (C)/(2))

    If A and B are complementary angles, then i) cos^(2) A + cos^(2) B =1 ii) sin^(2) A + sin^(2) B =1

    If A and B are ac ute angles satisfying 3 cos ^(2) A + 2 cos ^(2) B= 4 and (3 sin A )/(sin B) = (2 cos B)/(cos A), then A + 2B=

    The value of ((cos A + cos B )/( sin A - sin B )) ^(2015) + ((sin A + sin B )/( cos A - cos B )) ^(2015) =

    The value of ((cos A + coa B)/( sin A - sin B)) ^(2015) + ((sin A + sin B)/( cos A - cos B)) ^(2015) =