Home
Class 12
MATHS
I : i^2+i^4+i^6+......(2n+1) terms = - ...

I : `i^2+i^4+i^6+......(2n+1)` terms = - 1
II : `1+i^2+i^4+i^6+......i^(2n)=0`

A

only I is true

B

only II is true

C

both I and II are true

D

neither I nor II are true

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 2)|6 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 3)|6 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1|201 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos
  • COORDINATE SYSTEM (2D)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|12 Videos

Similar Questions

Explore conceptually related problems

Simplifiy i^(2)+i^(4)+i^(6)+.....+(2n+1) terms

Simplify i^18-3i^7 +i^2 (1 +i^4) (-i)^26 .

Knowledge Check

  • Statement - I : If n = 4m + 3 , is integer then i^(n) is equal to -i Statement- II : If n in N then (1 + i)^(2n) + (1- i)^(2n) is purely real number

    A
    Only I is true
    B
    Only II is true
    C
    Both I and II are true
    D
    Neither I nor II are true
  • i+ i^(2) + i^(3) + i^(4) + …. + i^(100)

    A
    0
    B
    `i`
    C
    `i-1`
    D
    `-1`
  • The value of ((1 + i)^(2n + 1))/((1- i)^(2n -1)) =

    A
    1
    B
    2
    C
    `pm 2`
    D
    `-2`
  • Similar Questions

    Explore conceptually related problems

    If n is a positive integer, show that (1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4) .

    If (1-i)(2-i)(3-i)....(1-ni)=x- iy then prove that 2.510..... (1+n)^(2)=x^(2)+y^(2)

    {:("sphere", "centre"),(I. r^(2) - 2r (3i + 4j - 5k) + 1 = 0, a.i + j + k),(II. (r - 3i + 2j - 5k). (r + i + j + 3k) = 0, b. 3i + 4j - 5k),(III. i^(1) + y^(2) + z^(2) - 6x + 2y - 4x - 1 = 0, c. 3i + 2j - 5k),(IV. (r - 3i - 2j + 5k)^(2) = 49, d. 3i - j + 2k):}

    I : The additive inverse of i- 2 is 2 - i II : The multiplicative inverse of 1 - I " is "1 +i

    The value of (1 + i)^(6) + (1 - i)^(6) is