Home
Class 12
MATHS
The ascending order of the moduli of the...

The ascending order of the moduli of the complex numbers `z_1=1 +I,z_2=1 +2i,z_3=(1-i)/(sqrt(2)),z_4=3+4i` is

A

`z_1,z_2,z_3,z_4`

B

`z_4,z_2,z_1,z_3`

C

`z_3,z_1,z_2,z_4`

D

`z_4,z_3,z_2,z_1`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 3)|6 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 1)|6 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos
  • COORDINATE SYSTEM (2D)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|12 Videos

Similar Questions

Explore conceptually related problems

If m_(1), m_(2), m_(3) and m_(4) respectively denote the moduli of the complex numbers 1+4i, 3+i, 1-i and 2-3i , then the correct one, among the following is

If (z_(3)-z_(1))/(z_(2)-z_(1)) is a real number, show that the points represented by the complex numbers z_(1),z_(2),z_(3) are collinear.

Knowledge Check

  • The descending order of the principal values of arguments of the complex numbers z_(1) = 1 + i , z_(2) = -sqrt3 + i, z_(3) = 1 + sqrt3 i , z_(4) = 1 - i is

    A
    `z_(3) , z_(2) , z_(1) , z_(4)`
    B
    `z_(2) , z_(3) , z_(1) , z_(4)`
    C
    `z_(3) , z_(1) , z_(2) , z_(4)`
    D
    `z_(4) , z_(1) , z_(3) , z_(2)`
  • The descending order of the moduli of z_(1) = (3 - 4i) (4 + 3i) , z_(2) = (3 + 4i)/(1 +i) , z_(3) = ((3 + i) (2- i))/(1+ i) , z_(4) = 5 + 12 i is

    A
    `z_(1) , z_(4) , z_(3) , z_(2)`
    B
    `z_(4) , z_(2) , z_(1) z_(3)`
    C
    `z_(3) , z_(1) , z_(2) , z_(4)`
    D
    `z_(4) , z_(3) , z_(2) , z_(1)`
  • The ascending order of the values of z_1=(1+i)^4,z_2=(sqrt3+i)^(12),z_3=(1+isqrt3)^(9) + (1-isqrt3)^9

    A
    `z_1,z_2,z_3`
    B
    `z_2,z_3,z_1`
    C
    `z_3,z_1,z_2`
    D
    `z_1,z_3,z_2`
  • Similar Questions

    Explore conceptually related problems

    The descending order of the values of z_1=((sqrt3)/(2)i+1/2)^6,z_2=((1)/(sqrt2)+(i)/(sqrt2))^4,z_3=((sqrt3)/(4)+(i)/(4))^6

    The ascending order of the values of z_1(1+i)^4+(1-i)^4, z_2=(sqrt3+i)^(12)+(sqrt3-i)^(12), z_3=(1+isqrt3)^(9)+(1-isqrt3)^9

    If alpha_1,alpha_2,alpha_3 respectively denote the moduli of the complex number -i,1/3(1+i) and -1 +i , then their increasing order is

    If m_1,m_2,m_3 and m_4 respectively denote the moduli of the complex numbers 1+4i,3+i,1-i and 2 -3i , then the correct one , among the following is

    If a complex number |z ^2-1|=|z|^2+1 , then z lies on :