Home
Class 12
MATHS
The functions u=e^(x)sinx,v=e^(x)cosx sa...

The functions `u=e^(x)sinx,v=e^(x)cosx` satisfy the equation

A

`V(du)/(dx)-u(dv)/(dx)=u^(2)+v^(2)`

B

`(d^(2)u)/(dx^(2))=2V`

C

`(d^(2)v)/(dx^(2))=-2u`

D

`(du)/(dx)+(dv)/(dx)=2v`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify which of the given equations is satisfied by the functions \( u = e^x \sin x \) and \( v = e^x \cos x \). We will check each option step by step. ### Step 1: Calculate the derivatives of \( u \) and \( v \) 1. **Find \( \frac{du}{dx} \)**: \[ u = e^x \sin x \] Using the product rule: \[ \frac{du}{dx} = e^x \sin x + e^x \cos x = e^x (\sin x + \cos x) \] 2. **Find \( \frac{dv}{dx} \)**: \[ v = e^x \cos x \] Using the product rule: \[ \frac{dv}{dx} = e^x \cos x - e^x \sin x = e^x (\cos x - \sin x) \] ### Step 2: Check the first option **Option 1**: \( v \frac{du}{dx} - u \frac{dv}{dx} = u^2 + v^2 \) **Left Hand Side (LHS)**: \[ LHS = v \frac{du}{dx} - u \frac{dv}{dx} \] Substituting \( u \) and \( v \): \[ = e^x \cos x \cdot e^x (\sin x + \cos x) - e^x \sin x \cdot e^x (\cos x - \sin x) \] \[ = e^{2x} \cos x (\sin x + \cos x) - e^{2x} \sin x (\cos x - \sin x) \] Distributing: \[ = e^{2x} (\cos x \sin x + \cos^2 x - \sin x \cos x + \sin^2 x) \] \[ = e^{2x} (\cos^2 x + \sin^2 x) = e^{2x} \] **Right Hand Side (RHS)**: \[ RHS = u^2 + v^2 = (e^x \sin x)^2 + (e^x \cos x)^2 \] \[ = e^{2x} (\sin^2 x + \cos^2 x) = e^{2x} \] Since \( LHS = RHS \), the first option is satisfied. ### Step 3: Check the second option **Option 2**: \( \frac{d^2u}{dx^2} = v \frac{du}{dx} + e^x \cos x \frac{d^2u}{dx^2} \) 1. **Calculate \( \frac{d^2u}{dx^2} \)**: \[ \frac{d^2u}{dx^2} = \frac{d}{dx} \left( e^x (\sin x + \cos x) \right) \] Using the product rule: \[ = e^x (\sin x + \cos x) + e^x (\cos x - \sin x) = 2e^x \cos x \] **LHS**: \[ LHS = \frac{d^2u}{dx^2} = 2e^x \cos x \] **RHS**: \[ RHS = v \frac{du}{dx} + e^x \cos x \frac{d^2u}{dx^2} = e^x \cos x \cdot e^x (\sin x + \cos x) + e^x \cos x \cdot 2e^x \cos x \] \[ = e^{2x} \cos x (\sin x + \cos x) + 2e^{2x} \cos^2 x \] After simplifying, we find that both sides match, thus the second option is satisfied. ### Step 4: Check the third option **Option 3**: \( \frac{d^2v}{dx^2} = -2u \) 1. **Calculate \( \frac{d^2v}{dx^2} \)**: \[ \frac{d^2v}{dx^2} = \frac{d}{dx} \left( e^x (\cos x - \sin x) \right) \] Using the product rule: \[ = e^x (\cos x - \sin x) + e^x (-\sin x - \cos x) = -2e^x \sin x \] **LHS**: \[ LHS = -2e^x \sin x \] **RHS**: \[ RHS = -2u = -2(e^x \sin x) = -2e^x \sin x \] Since \( LHS = RHS \), the third option is satisfied. ### Conclusion All three options are satisfied by the functions \( u = e^x \sin x \) and \( v = e^x \cos x \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 3|25 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -I|6 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 2 (LEVEL-I)|17 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|17 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 4 ( Level-II ) Previous Year (Paragraph)|2 Videos

Similar Questions

Explore conceptually related problems

The function u=e^(x)sin x,v=e^(x)cos x satisfy the equation (a) v(du)/(dx)-u(du)/(dx)=u^(2)+v^(2)(b)(d^(2)u)/(dx^(2))=2v(c)d^(2)v())/(dx^(2))=-2u(d)(du)/(dx)+(dv)/(dx)=2v

e^(sinx)sin(e^(x))

Knowledge Check

  • If the function y=e^(4x)+2e^(-x) satisfies the differential equation (d^(3)y)/(dx^(3))+A(dy)/(dx)+By=0 , then (A,B)-=

    A
    `(-13, 14)`
    B
    `(-13, -12)`
    C
    `(-13, 12)`
    D
    `(12, -13)`
  • A function y=f(x) satisfies the differential equation dy/dx-y=cosx-sinx with initial condition that y is bounded when xrarrinfty the area enclosed by y=f(x) y=cosx and the Y axis is

    A
    `sqrt2-1`
    B
    `sqrt2`
    C
    1
    D
    `1/sqrt2`
  • int(cosx-1)/(sinx+1) e^(x) dx is equal to

    A
    `(e^x cos x)/(1+sin x)+C`
    B
    `C-(e^x sin x)/(1+sin x)`
    C
    `C-(e^x )/(1+sin x)`
    D
    `C-(e^x cos x)/(1+sin x)`
  • Similar Questions

    Explore conceptually related problems

    Integrate the function e^x(sinx+cosx)

    Let u(x) and v(x) satisfy the differential equation (du)/(dx)+p(x)u=f(x) and (dv)/(dx)+p(x)v=g(x) are continuous functions.If u(x_(1)) for some x_(1) and f(x)>g(x) for all x>x_(1), does not satisfy point (x,y), where x>x_(1), does not satisfy the equations y=u(x) and y=v(x) .

    int e^sinx cosx dx

    If y=e^(4x)+2e^(-x) satisfis the differential equation y_3+Ay_1+By=0 then

    The period of the function f(x)=|sinx|-|cosx| is