Home
Class 12
MATHS
cos(A + B) cos (A-B) =...

`cos(A + B) cos (A-B) =`

A

`sin^(2)A - sin^(2)B`

B

`cos^(2)A - sin^(2) B`

C

`cos^(2)B - sin^(2) B`

D

`cos^(2)A - cos^(2) B`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Very Short Answer type Questions|23 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Short Answer Type Questions|26 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - ASSERTION-REASON TYPE|2 Videos
  • TRIGONOMETRIC RATIOS OF MULTIPLE ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

From the formula of sin (A + B), deduce the formulae of cos(A + B) and cos (A-B).

(xv) a cos (B-C) + b cos (C-A) + c cos (A-B) = (4(Delta))/R

If A,B,C are the angles of a triangle, show that, (iii) (cos A cos C + cos (A + B) cos(B + C))/(cos A sin C - sin (A + B) cos (B + C)) = cot C .

Prove that: cos(A+B+C)+cos(A-B+C)+cos(A+B-C)+cos(-A+B+C)=4cos A\ cos B\ cos C

Prove that (b + c) cos A + (c + a) cos B + (a + b) cos C = 2s

If cos A = tan B , cos B= tan C, cos C= tanA , show that sin A= sin B= sin C= 2 sin 18^(@)

Prove the following identities : (sin(A+B) - 2 sin A + sin (A-B))/(cos(A+B)-2cos A +cos (A-B))=tan A

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In /_\ABC show that a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc

In a DeltaABC prove that: a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc