Home
Class 12
MATHS
tan (alpha + beta) =1/2, tan(alpha - bet...

`tan (alpha + beta) =1/2, tan(alpha - beta) = 1/3 "then the value of" tan^(2) alpha is-`

Text Solution

Verified by Experts

The correct Answer is:
0.1714
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Matrix Match Type|2 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - ASSERTION-REASON TYPE|2 Videos
  • TRIGONOMETRIC RATIOS OF MULTIPLE ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If sin(alpha + beta) = 4/5 and sin (alpha - beta)= 5/13 , find the value of tan 2 alpha .

If sin ( alpha + beta ) =(4)/(5) and sin (alpha - beta ) =(5)/(13), find the value of tan 2 alpha

Knowledge Check

  • If sin alpha + sin beta = p "and" cos alpha + cos beta = q "then the value of " "tan" (alpha-beta)/2 will be-

    A
    `sqrt((4-p^(2)-q^(2))/(p^(2) + q^(2)))`
    B
    `sqrt((p^(2) + q^(2) - 4)/(p^(2) + q^(2)))`
    C
    `-sqrt((4-p^(2)-q^(2))/(p^(2)+q^(2)))`
    D
    `-sqrt((P^(2) +q^(2)-4)/(p^(2) + q^(2)))`
  • If alpha+beta=(7pi)/(12) and cot beta=1/sqrt3 , then the value of tan alpha is :

    A
    `1/sqrt3`
    B
    `sqrt3`
    C
    0
    D
    1
  • If alpha + beta =(pi)/(2)and beta + gamma =alpha, then the value of tan alpha is -

    A
    `tan beta +tan gamma`
    B
    `2 tan beta + tan gamma`
    C
    `tan beta + 2 tan gamma`
    D
    `2(tan beta+ tan gamma)`
  • Similar Questions

    Explore conceptually related problems

    If tan 2alpha = cot 2beta , then sec(alpha + beta) =

    In sin alpha+ sin beta=(1)/(2) and cos alpha+ cos beta =(5)/(4) , find the value of tan alpha+tan beta .

    If tan alpha.tan2alpha = 1 then find the value of cos2alpha .

    If tan (alpha + beta) = a + b " and " tan ( alpha -beta) = a-b, "then show that, " a tan alpha - b tan beta = a^(2)-b^(2)

    If sin^(2) theta=(cos 2 alpha cos 2 beta)/(cos^(2)(alpha+ beta)) then, show that one value of "tan"^(2) (theta)/(2) " is " "tan" ((pi)/(4)-alpha) "tan" ((pi)/(4)+beta) .