Home
Class 12
MATHS
If omega be the imaginary cube root of 1...

If `omega` be the imaginary cube root of 1, then the value of `(3+omega+3omega^(2))^(4)` will be

A

16

B

`16omega`

C

`16omega^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
(B)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBHS ARCHIVE 2017 (UNIT-4)|10 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBHS ARCHIVE 2017 (UNIT-5)|6 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBHS ARCHIVE 2017 (UNIT-2)|6 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion-Reason Type)|2 Videos
  • ORDER AND DEGREE OF DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (E Assertion - Reasion Type )|2 Videos

Similar Questions

Explore conceptually related problems

If omega and omega^2 be the imaginary cube roots of unity then find the value of (3+3omega+5omega^2)^6-(2+6omega+2omega^2)^3

If omega be an imaginary cube root or unity, prove that (x+y omega+ z omega^(2))^(4)+ (x omega+ y omega^(2)+z)^(4)+(x omega^(2)+y+ z omega)^(4)=0

Knowledge Check

  • If omega be the imaginary cube root of unity then the value of omega^(241) will be

    A
    0
    B
    1
    C
    `omega`
    D
    `omega^2`
  • If omega is an imaginary cube root of unity, then the value of (1+ omega- omega^(2))(1- omega + omega ^(2)) is-

    A
    1
    B
    2
    C
    4
    D
    8
  • Let omega be an imaginary cube root of unity, then the value of 2 (omega + 1) (omega^(2) +1) +3 (2 omega +1) (2 omega^(2) +1)…+ (n+1) (n omega +1) (n omega ^(2) +1) is-

    A
    `[(n(n+1))/(2)]^(2)+n`
    B
    `[(n(n+1))/(2)]^(2)`
    C
    `[(n(n+1))/(2)]^(2)-n`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If omega be an imaginary cube root of 1 then the value of |[1,omega^2,omega],[omega,1,omega^2],[omega^2,omega,1]| is

    If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^(2),-omega),(1+omega^(2),omega,-omega^(2)),(omega+omega^(2),omega,-omega^(2))| is

    If omega is an imaginary cube root of unity then the value of omega^n+omega^(2n) (where n is not a multiple of 3) is

    If omega is an imaginary cube root of unity then the value of (2-omega),(2-omega^(2))+2(2-omega)(3-omega^(2))+....+(n-1)(n-omega)(n-omega^(2)) is

    If omega is a complex cube root of unity then the value of [225 + ( 3 omega + 8 omega ^(2))^(2) +(3 omega ^(2) + 8 omega )^(2)] is-