Home
Class 12
MATHS
Statement-I: int (x+1)/(x(1+xe^(x))^(2))...

Statement-I: `int (x+1)/(x(1+xe^(x))^(2))dx=(1)/(1+xe^(x))+log |(xe^(x))/(1+ xe^(x))|+c` where c is a real number.
Statement-II: `(d)/(dx)(xe^(x))=(x+1)e^(x).`

A

Statement-I is True, Statement-II is True, Statement-II is a correct explanation for Statement-I

B

Statement-I is True, Statement-II is True, Statement-II is not a correct explanation for Statement-I

C

Statement-I is True, Statement-II is False.

D

Statement-I is False, Statement-II is True.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Comprehension Type)|6 Videos
  • MEASURMENT OF TRIGONOMETRICAL ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBJEE 2026|23 Videos

Similar Questions

Explore conceptually related problems

int ((x+1)dx)/(x(1+xe^(x))^(2))

int((x+1)dx)/(x(1+xe^x))

int ((x+1)/(x))(x+ log x)^(2)dx

Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

int (xe^(x)dx)/((x+1)^(2))

int_(0)^(1)xe^(-x^(2))dx

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2log|g(x)|+c , then-

y(dy)/(dx)=xe^(x^(2)+y^(2))

If int (e^(x))/(e^(2x)+6e^(x)+5)dx=(1)/(lamda)log |(e^(x)+1)/(e^(x)+5)|+c , then the value of lamda is-

int_(1)^(2)xe^(x)dx