Home
Class 12
MATHS
The domain of definition of f(x)=sqrt((1...

The domain of definition of `f(x)=sqrt((1-|x|)/(2-|x|))` is

A

`(-oo,-1)cup(2,oo)`

B

`[-1,1]cup(2,oo)cup(-oo,-2)`

C

`(-oo,1)cup(2,oo)`

D

`[-1,1)cup(2,oo)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise HS (XI) AND WBJEE 2019 (HS (XI) 2019) (GROUP -A)|10 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise HS (XI) AND WBJEE 2019 (HS (XI) 2019) (GROUP -B)|14 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise HS (XI) AND WBJEE 2018 (GROUP - D)|9 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion-Reason Type)|2 Videos
  • ORDER AND DEGREE OF DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (E Assertion - Reasion Type )|2 Videos

Similar Questions

Explore conceptually related problems

Find the domain of definition of f(x)=sqrt(x-1) +sqrt(2-x)

Find the domain of definition of f(x)=sqrt(x+1)+sqrt(4-x)

Knowledge Check

  • The domain of definition of the function f(x)=sqrt(x+3) is :

    A
    `(-oo,3)`
    B
    `(-oo,3]`
    C
    `(3,oo)`
    D
    `[-3,oo)`
  • The domain of definition of f(x) = sqrt(log_e ((4x - x^2)/3)) is

    A
    `0 lt x lt 3`
    B
    `x gt 1`
    C
    `1 le x le 3`
    D
    `x lt 3`
  • Domain of definition of f(x) = sin^-1 ((3 - 2x)/5)

    A
    a) [-1,4]
    B
    b) (-1,4)
    C
    c) `[ 0 , infty]`
    D
    d) `(- infty, 4)`
  • Similar Questions

    Explore conceptually related problems

    The domain of the function f(x)=1/sqrt(|x|-x) is

    Find the domain of definition of f(x)=log_e ((1-x)/(1+x)) Further show that f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2)) , x_1,x_2 in (-1,1)

    Find the domain of f(x)=sqrt((1-|x|)/(|x|-2))

    The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is

    Find the domain of definition of f(x)=log_e.(1-x)/(1+x). Further show that, f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2)),x_1,x_2 in (-1,1)