Home
Class 12
MATHS
Cosider the non-constant differentiable ...

Cosider the non-constant differentiable function f of one variable which obeys the relation `(f(x))/(f(y))=f(x-y)`. If `f'(0)=p` and `f'(5)=q`, then `f'(-5)` is

A

`(p^2)/(q)`

B

`(q)/(p)`

C

`(p)/(q)`

D

q

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT-4|4 Videos
  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT-2|6 Videos
  • QUESTION PAPER -2018

    CHHAYA PUBLICATION|Exercise WBJEE|45 Videos
  • QUESTIONS PAPER -2019

    CHHAYA PUBLICATION|Exercise WBJEE 2019|45 Videos

Similar Questions

Explore conceptually related problems

A real valued function satisfies the relation f(x+y)=f(x)+f(y)+(e^x-1)(e^y-1) , AAx,y in R . If f'(0) = 2, find f(x).

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

Knowledge Check

  • If the function f satisfies the relation f(x+y)+f(x-y)=2f(x)xxf(y), AA x, y, in R and f(0) ne 0 , then

    A
    an even function
    B
    an odd function
    C
    neither even or odd
    D
    none of these
  • If the function f satisfies the reation f(x+y)+f(x-y)=2f(x) f(y) Aax,yin RR and f(0) ne 0 then ____

    A
    `f(x)` is an function
    B
    `f(x)` is an odd function
    C
    If `f(2)=a` then `f(-2)=a`
    D
    If `f(4) =b` then `f(-4) =-b`
  • If f(x+y)=f(x). f(y) for all x and y and f(5)=2, f'(0)=4, then f '(5) will be

    A
    2
    B
    4
    C
    6
    D
    8
  • Similar Questions

    Explore conceptually related problems

    Let f(x+y)=f(x)f(y)AA x, in IR, f(6)=5 and f'(0)=1 . Then the value of f' (6) is

    For all values ofx and y,jf f(x + y) = f(x).f(y), f(5)= 2 and f'(0)=3, the value of f'(5) is

    If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,and f(0)=3, and if f(3)=3, then the value of f(-3) is ______________

    Let f(x) be a differentiable function and f'(4)=5 . Then lim_(x to 2) (f(4) -f(x^(2)))/(x-2) equals

    Let f(x+y) = f(x) . f(y) for all x,y where f(0) ne 0. If f(5) =2 and f'(0) =3 , then f'(5) is equal to