Home
Class 12
MATHS
Find domain of the function f(x) = sq...

Find domain of the function
`f(x) = sqrt(-log_((x+4)/2)(log_2(2x-1)/(3+x))`

A

`(-4, -3) uu (4 , oo)`

B

`(-oo, -3) uu (4,oo)`

C

`(-oo,-4)uu(3,oo)`

D

Noen of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \[ f(x) = \sqrt{-\log_{\frac{x+4}{2}}\left(\frac{\log_2(2x-1)}{3+x}\right)}, \] we need to ensure that the expression inside the square root is non-negative and that the logarithmic expressions are defined. Let's break this down step by step. ### Step 1: Ensure the expression inside the square root is non-negative The expression inside the square root must be greater than or equal to zero: \[ -\log_{\frac{x+4}{2}}\left(\frac{\log_2(2x-1)}{3+x}\right) \geq 0. \] This implies: \[ \log_{\frac{x+4}{2}}\left(\frac{\log_2(2x-1)}{3+x}\right} \leq 0. \] ### Step 2: Analyze the logarithmic condition The logarithm is less than or equal to zero when the argument is between 0 and 1. Thus, we need: 1. \(\frac{\log_2(2x-1)}{3+x} < 1\) 2. \(\frac{\log_2(2x-1)}{3+x} > 0\) ### Step 3: Solve the first inequality Starting with the first inequality: \[ \frac{\log_2(2x-1)}{3+x} < 1 \implies \log_2(2x-1) < 3+x. \] This can be rearranged to: \[ 2x - 1 < 2^{3+x}. \] ### Step 4: Solve the second inequality Now for the second inequality: \[ \frac{\log_2(2x-1)}{3+x} > 0 \implies \log_2(2x-1) > 0. \] This means: \[ 2x - 1 > 1 \implies 2x > 2 \implies x > 1. \] ### Step 5: Ensure the logarithm base is valid The base of the logarithm, \(\frac{x+4}{2}\), must be greater than 0 and not equal to 1: 1. \(\frac{x+4}{2} > 0 \implies x + 4 > 0 \implies x > -4\). 2. \(\frac{x+4}{2} \neq 1 \implies x + 4 \neq 2 \implies x \neq -2\). ### Step 6: Combine the conditions From the inequalities, we have: - \(x > 1\) (from the second inequality). - \(x > -4\) (which is always satisfied if \(x > 1\)). - \(x \neq -2\) (which is also satisfied since \(-2 < 1\)). ### Step 7: Final domain Thus, the only relevant condition is \(x > 1\). The domain of the function \(f(x)\) is: \[ \text{Domain: } (1, \infty). \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 3|119 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 1 ( JEE Main)|48 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(log_(16)x^(2))

The domain of the function f(x)=sqrt(1-log_(2)(log_(sqrt(3))x))

Knowledge Check

  • The domain of the function f(x)=log_(2x-1)(x-1) is

    A
    `(1,oo)`
    B
    `((1)/(2),oo)`
    C
    `(0,oo)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The domain of the function f(x)=sqrt(log_(16)x^(2)) is

    Find the domain of the function f(x)=log_(e)(x-2)

    Find the domain of the function f(x)=log_(e)(x-2)

    Find the domain of the function : f(x)=sin^(-1)(log_(2)x)

    The domain of the function f(x)=sqrt(log_(x^(2)-1)x) is

    The domain of function f(x)=sqrt(log_(x^(2))(x)) is

    Find the domain of the function : f(x)=(1)/(sqrt(log_((1)/(2))(x^(2)-7x+13)))