Home
Class 12
MATHS
If a hyperbola passes through the focus ...

If a hyperbola passes through the focus of the ellipse `x^(2)/25+y^(2)/16=1` and its transverse and conjugate gate axis coincides with the major and minor axis of the ellipse, and product of their eccentricities is 1, then

A

equation of hyperbola `x^(2)/(9)-y^(2)/(16)=1`

B

equation of hyperbola `x^(2)/(9)-x^(2)/(25)=1`

C

focus of hyperbola (5, 0)

D

focus of hyperbola is `(5sqrt3,0)`

Text Solution

Verified by Experts

The correct Answer is:
A,C
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-I)|4 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • INDEFINITE INTEGRATION

    MOTION|Exercise EXERCISE - 4 (LEVEL - II)|6 Videos

Similar Questions

Explore conceptually related problems

If a hyperbola passes through foci of the ellipse x^2/5^2 + y^2/3^2 = 1 and its transverse and conjugate axes coincide with the major and minor axes of the ellipse and the product of their eccentricities is 1, then the product of length of semi transverse and conjugate axes of hyperbola is...

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of a. hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

A hyperbola passes through a focus of the ellipse (x^(2))/(169)+(y^(2))/(25)=1. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse.The product of eccentricities is 1. Then the equation of the hyperbola is

Let a hyperbola passes through the focus of the ellipse (x^(2))/(25)+(y^(2))/(16)=1 . The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the product of eccentricities of given ellipse and hyperbola is 1, then

An ellipse passes through a focus of the hyperbola x^2/9 - y^2/16 = 1 and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. Foci of the ellipse are (A) (+- 4, 0) (B) (+-3, 0) (C) (+-5, 0) (D) none of these

An ellipse passes through a focus of the hyperbola x^2/9 - y^2/16 = 1 and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. Equation of ellipse is : (A) x^2/16 + y^2/9 =1 (B) x^2/25 + y^2/9 = 1 (C) x^2/25 + y^2/16 = 1 (D) none of these

An ellipse passes through a focus of the hyperbola x^2/9 - y^2/16 = 1 and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. If l and l\' be the length of semi latera recta of ellipse and hyperbola, then ll\'= (A) 144/15 (B) 256/15 (C) 225/12 (D) none of these

An ellipse passes through the foci of the hyperbola,9x^(2)-4y^(2)=36 and its major and mininor axes lie along the transverse and conjugate axes of the hyperbola respectively.If the product of eccentricities of the two conics is (1)/(2), then which of the following points does not lie on the ellipse?

The equation of the parabola whose vertex is at the centre of the ellipse x^2/25+y^2/16 = 1 and the focus coincide with the focus of the ellipse on the positive side of the major axis of the ellipse is

MOTION-HYPERBOLA-EXERCISE-4 (Level-II)
  1. If a hyperbola passes through the focus of the ellipse x^(2)/25+y^(2)/...

    Text Solution

    |

  2. Let ABCD be a square of side length 2 units. C2 is the circle through ...

    Text Solution

    |

  3. Let ABCD be a square of side length 2 units. C(2) is the fircle throug...

    Text Solution

    |

  4. Let ABCD be a square of side length 2 units. C(2) is the circle throug...

    Text Solution

    |

  5. A hyperbola, having the transverse axis of length 2 sin theta, is conf...

    Text Solution

    |

  6. Match the statements in Column I with the properties in Column II. A

    Text Solution

    |

  7. Let 'a' and 'b' be non-zero real numbers. Then, the equation (ax^2+ by...

    Text Solution

    |

  8. Consider a branch of the hypebola x^2-2y^2-2sqrt2x-4sqrt2y-6=0 with ve...

    Text Solution

    |

  9. Match the conics in column I with statements/ex- pressions in Column I...

    Text Solution

    |

  10. An ellipse intersects the hyperbola 2x^(2)-2y^(2)=1 orthogonally. The ...

    Text Solution

    |

  11. The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 in...

    Text Solution

    |

  12. The circle x^2+y^2-8x=0 and hyperbola x^2/9-y^2/4=1 intersect at the...

    Text Solution

    |

  13. The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1. I...

    Text Solution

    |

  14. Let the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=...

    Text Solution

    |

  15. Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1If t...

    Text Solution

    |

  16. Consider the hyperbola H:x^2-y^2=1 and a circle S with centre N(x2,0) ...

    Text Solution

    |

  17. Let H :(x^2)/(a^2)-(y^2)/(b^2)=1 , where a > b >0 , be a hyperbola in ...

    Text Solution

    |