Home
Class 11
MATHS
lim(xrarr0)("cosec"x-cotx)/(x) is equal ...

`lim_(xrarr0)("cosec"x-cotx)/(x)` is equal to

A

`1/2`

B

1

C

`1/2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\csc x - \cot x}{x} \), we will follow these steps: ### Step 1: Rewrite the functions We start by rewriting \(\csc x\) and \(\cot x\) in terms of sine and cosine: \[ \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the expression: \[ \csc x - \cot x = \frac{1}{\sin x} - \frac{\cos x}{\sin x} = \frac{1 - \cos x}{\sin x} \] ### Step 2: Substitute into the limit Now, substitute this back into the limit: \[ \lim_{x \to 0} \frac{\csc x - \cot x}{x} = \lim_{x \to 0} \frac{\frac{1 - \cos x}{\sin x}}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \] ### Step 3: Identify the indeterminate form As \(x\) approaches \(0\), both the numerator \(1 - \cos x\) and the denominator \(x \sin x\) approach \(0\). This gives us the indeterminate form \(\frac{0}{0}\). ### Step 4: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. #### Derivative of the numerator: The derivative of \(1 - \cos x\) is \(\sin x\). #### Derivative of the denominator: The derivative of \(x \sin x\) can be found using the product rule: \[ \frac{d}{dx}(x \sin x) = \sin x + x \cos x \] ### Step 5: Rewrite the limit using derivatives Now we can rewrite our limit: \[ \lim_{x \to 0} \frac{\sin x}{\sin x + x \cos x} \] ### Step 6: Substitute \(x = 0\) Now we substitute \(x = 0\): - The numerator \(\sin(0) = 0\) - The denominator \(\sin(0) + 0 \cdot \cos(0) = 0 + 0 = 0\) This again gives us the indeterminate form \(\frac{0}{0}\), so we apply L'Hôpital's Rule again. ### Step 7: Apply L'Hôpital's Rule again #### Derivative of the numerator: The derivative of \(\sin x\) is \(\cos x\). #### Derivative of the denominator: The derivative of \(\sin x + x \cos x\) is: \[ \cos x + (\cos x - x \sin x) = 2\cos x - x \sin x \] ### Step 8: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{\cos x}{2\cos x - x \sin x} \] ### Step 9: Substitute \(x = 0\) again Substituting \(x = 0\): - The numerator \(\cos(0) = 1\) - The denominator \(2\cos(0) - 0 \cdot \sin(0) = 2 - 0 = 2\) Thus, we have: \[ \lim_{x \to 0} \frac{\cos x}{2\cos x - x \sin x} = \frac{1}{2} \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{\csc x - \cot x}{x} = \frac{1}{2} \] ---

To solve the limit \( \lim_{x \to 0} \frac{\csc x - \cot x}{x} \), we will follow these steps: ### Step 1: Rewrite the functions We start by rewriting \(\csc x\) and \(\cot x\) in terms of sine and cosine: \[ \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the expression: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (cosecx-cotx)

lim_(xrarr0)x sec x

Knowledge Check

  • The value of lim_(xrarr0)(secx+tanx)^(1)/(x) is equal to

    A
    e
    B
    `e^(2)`
    C
    `e^(-1)`
    D
    1
  • lim_(xrarr0)("cosec x")^(1//logx) is equal to :

    A
    0
    B
    1
    C
    `1//e`
    D
    none of these
  • lim_(xrarr0)("cosec x")^(1//logx) is equal to :

    A
    0
    B
    1
    C
    `1//e`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

    lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

    lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

    lim_(xrarr0)(1+cos^2x)/(1+sin^2x) is equal to

    lim_(xrarr0) (1+x+x^2-e^x)/(x^2) is equal to