Home
Class 11
MATHS
Differentiate the following with respect...

Differentiate the following with respect to x using first principle method.
`sqrt(x)+(1)/(sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \sqrt{x} + \frac{1}{\sqrt{x}} \) using the first principle of derivatives, we follow these steps: ### Step 1: Define the function Let \( f(x) = \sqrt{x} + \frac{1}{\sqrt{x}} \). ### Step 2: Apply the first principle of derivatives The derivative of \( f(x) \) using the first principle is given by: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 3: Calculate \( f(x+h) \) We need to find \( f(x+h) \): \[ f(x+h) = \sqrt{x+h} + \frac{1}{\sqrt{x+h}} \] ### Step 4: Substitute into the limit Now, substitute \( f(x+h) \) and \( f(x) \) into the limit: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{x+h} + \frac{1}{\sqrt{x+h}}\right) - \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)}{h} \] ### Step 5: Simplify the expression This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x} + \frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h} \] ### Step 6: Split the limit We can split this limit into two parts: \[ f'(x) = \lim_{h \to 0} \left( \frac{\sqrt{x+h} - \sqrt{x}}{h} \right) + \lim_{h \to 0} \left( \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h} \right) \] ### Step 7: Evaluate the first limit For the first limit, we can use the identity \( a - b = \frac{(a^2 - b^2)}{a + b} \): \[ \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}} \] ### Step 8: Evaluate the second limit For the second limit, we can also use the identity: \[ \frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} = \frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}} = \frac{-h}{\sqrt{x}\sqrt{x+h}(\sqrt{x+h} + \sqrt{x})} \] Thus: \[ \lim_{h \to 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h} = \lim_{h \to 0} \frac{-1}{\sqrt{x}\sqrt{x+h}} \cdot \frac{1}{\sqrt{x+h} + \sqrt{x}} = -\frac{1}{2x} \] ### Step 9: Combine the results Now, combine both limits: \[ f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{2x} \] ### Final Result Thus, the derivative of \( f(x) = \sqrt{x} + \frac{1}{\sqrt{x}} \) is: \[ f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{2x} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following with respect to x using first principle method. (x^(2))/(x+1)

Differentiate the following with respect to x using first principle method. (2x+3)/(x+1)

Differentiate the following with respect to 'x' using first principle : xcosx

Differentiate the following with respect to 'x' using first principle : cos(x^(2)+1) .

Differentiate the following with respect to 'x' using first principle : (ax+b)/(cx+d)

Differentiate Sin(x^(2)) with respect to x using first principle method.

Differentiate Sin^(2)x with respect to x using first principle method.

CBSE COMPLEMENTARY MATERIAL-LIMITS AND DERIVATIVES -LONG ANSWER TYPE QUESTIONS
  1. Differentiate the following with respect to x using first principle me...

    Text Solution

    |

  2. Differentiate the following with respect to x using first principle me...

    Text Solution

    |

  3. Differentiate the following with respect to x using first principle me...

    Text Solution

    |

  4. Evaluate the following Limits lim(xto oo)(2x^(8)-3x^(2)+1)/(x^(8)+6x...

    Text Solution

    |

  5. Evaluate the following Limits lim(xto 1)(2x^(8)-3x^(2)+1)/(x^(8)+6x^...

    Text Solution

    |

  6. Evaluate the following Limits lim(xto 0)(1-cos2x)/(x*tan3x)

    Text Solution

    |

  7. Evaluate, underset(xto(pi//4))"lim"(sinx-cosx)/(x-pi/4)

    Text Solution

    |

  8. Evaluate the following Limits lim(xto(pi)/(6))(sqrt(3)sinx-cosx)/((p...

    Text Solution

    |

  9. Evaluate the following Limits lim(xto0)(sinx)/(tanx)

    Text Solution

    |

  10. Evaluate the following Limits lim(xto 9)(x^((3)/(2))-27)/(x^(2)-81)

    Text Solution

    |

  11. Evaluate the following limit: (lim)(x->a)((x+2)^(5//2)-(a+2)^(5//2))/(...

    Text Solution

    |

  12. Evaluate the following Limits lim(xto0)(cosax-cosbx)/(1-cosx)

    Text Solution

    |

  13. Evaluate the following limits: lim(xtoa)(cosx-cosa)/(cotx-cota)

    Text Solution

    |

  14. Evaluate the following Limits lim(xto pi)(1+sec^(3)x)/(tan^(2)x)

    Text Solution

    |

  15. Evaluate the following Limits lim(xto1)(x-1)/(log(e)x)

    Text Solution

    |

  16. Evaluate the following Limits lim(xtoe)(x-e)/((log(e)x)-1)

    Text Solution

    |

  17. Evaluate the following Limits lim(xto2)[(4)/(x^(3)-2x^(2))+(1)/(2-x)...

    Text Solution

    |

  18. Evaluate the following Limits lim(xtoa)[(sqrt(a+2x)-sqrt(3x))/(sqrt(...

    Text Solution

    |

  19. Evaluate the following limits: lim(xto0)([sin(2+x)-sin(2-x)])/(x)

    Text Solution

    |

  20. Evaluate the following Limits lim(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)...

    Text Solution

    |