Home
Class 11
MATHS
Solve ((x-1)(x-2))/((x-3)(x-4))ge0...

Solve `((x-1)(x-2))/((x-3)(x-4))ge0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{(x-1)(x-2)}{(x-3)(x-4)} \geq 0\), we will follow these steps: ### Step 1: Identify the points where the expression is zero or undefined The expression \(\frac{(x-1)(x-2)}{(x-3)(x-4)}\) is zero when the numerator is zero. This occurs at: - \(x - 1 = 0 \Rightarrow x = 1\) - \(x - 2 = 0 \Rightarrow x = 2\) The expression is undefined when the denominator is zero. This occurs at: - \(x - 3 = 0 \Rightarrow x = 3\) - \(x - 4 = 0 \Rightarrow x = 4\) ### Step 2: Create a number line with critical points The critical points we found are \(1, 2, 3, 4\). We will use these points to divide the number line into intervals: - \((-∞, 1)\) - \((1, 2)\) - \((2, 3)\) - \((3, 4)\) - \((4, ∞)\) ### Step 3: Test each interval We will test a point from each interval to determine the sign of the expression in that interval. 1. **Interval \((-∞, 1)\)**: Choose \(x = 0\) \[ \frac{(0-1)(0-2)}{(0-3)(0-4)} = \frac{(-1)(-2)}{(-3)(-4)} = \frac{2}{12} = \frac{1}{6} > 0 \] (Positive) 2. **Interval \((1, 2)\)**: Choose \(x = 1.5\) \[ \frac{(1.5-1)(1.5-2)}{(1.5-3)(1.5-4)} = \frac{(0.5)(-0.5)}{(-1.5)(-2.5)} = \frac{-0.25}{3.75} < 0 \] (Negative) 3. **Interval \((2, 3)\)**: Choose \(x = 2.5\) \[ \frac{(2.5-1)(2.5-2)}{(2.5-3)(2.5-4)} = \frac{(1.5)(0.5)}{(-0.5)(-1.5)} = \frac{0.75}{0.75} = 1 > 0 \] (Positive) 4. **Interval \((3, 4)\)**: Choose \(x = 3.5\) \[ \frac{(3.5-1)(3.5-2)}{(3.5-3)(3.5-4)} = \frac{(2.5)(1.5)}{(0.5)(-0.5)} = \frac{3.75}{-0.25} < 0 \] (Negative) 5. **Interval \((4, ∞)\)**: Choose \(x = 5\) \[ \frac{(5-1)(5-2)}{(5-3)(5-4)} = \frac{(4)(3)}{(2)(1)} = \frac{12}{2} = 6 > 0 \] (Positive) ### Step 4: Determine the intervals where the expression is greater than or equal to zero From our tests, we have: - Positive in \((-∞, 1)\) - Negative in \((1, 2)\) - Positive in \((2, 3)\) - Negative in \((3, 4)\) - Positive in \((4, ∞)\) ### Step 5: Include the points where the expression is zero The expression is equal to zero at \(x = 1\) and \(x = 2\). It is undefined at \(x = 3\) and \(x = 4\). ### Final Solution Thus, the solution set is: \[ x \in (-\infty, 1] \cup [2, 3) \cup (4, \infty) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS(True // False)|4 Videos
  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|33 Videos
  • MATHEMATICAL REASONING

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B SHORT ANSWER TYPE QUESTIONS|5 Videos

Similar Questions

Explore conceptually related problems

solve f(x) = ((x-1)(2-x))/((x-3))ge 0.

Solve the following rational in equalities (i) ((x-1)(x+2))/((x-3)(x+3)) lt 0 (ii) ((1-x)^(3)(x+2)^(4))/((x+9)^(2)(x-8))ge0 (iii) ((x^(2)-3x+1)^(3))/((x-1)(x+2))le0 (iv) (x(2^(x)-3^(x)))/((x^(2)+x+1)(x-1))gt0 (v) ((x-1)(x-2)(x-3))/((x+1)(x+2)(x+3)) le1 (vi) 1 lt (3x^(2)-7x+8)/(x^(2)+1) le2

Knowledge Check

  • If ((|x|-1)(|x|-2))/((|x|-3))ge0 then x lies in

    A
    `x in [1,2]uu[3,oo)`
    B
    `x in[-oo,-3]uu[-2,-1]`
    C
    `x in (-oo,-3)uu[-2,-1]uu(3,oo)`
    D
    `x in (-oo,-3)uu[-2,-1]uu[1,2]uu(3,oo)`
  • A number x is chosen at random from the set {1,2,3,4, ………., 100} . Defind the event : A = the chosen number x satisfies ((x-10)(x-50))/((x-30))ge0 , then P(A) is

    A
    `0.20`
    B
    `0.51`
    C
    `0.71`
    D
    `0.70`
  • Solve- (1)/(2) ((3)/(5)x +4) ge (x-6)

    A
    `(-oo,120]`
    B
    `[0,10]`
    C
    `[3,20]`
    D
    `[12,oo]`
  • Similar Questions

    Explore conceptually related problems

    Solve the inequality ((x-1)^(4)(x-3)^3)/((x-5)^2)ge0

    Solve (2)/(x^2-x+1)-(1)/(x+1)-(2x-1)/(x^3+1) ge 0.

    Sove ((x+2)(x^2-2x+1))/(-4 +3x-x^2) ge 0

    Find the solution set of ((x-1)(x-2)^(2)(x+4))/((x+2)(x-3)) ge 0

    Sovle x(x+2)^2(x-1)^5 (2x-3)(x-3)^4 ge 0