Home
Class 12
MATHS
The points A,B and C with position vecto...

The points A,B and C with position vectors `3 hati - y hatj + 2hatk, 5 hati - hatj + hatk and 3x hati+ 3 hatj- hatk` are collinear. Find the values of x and y and also the ratio in which the point B divides AC.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the values of \( x \) and \( y \) such that the points \( A \), \( B \), and \( C \) are collinear, and then we will determine the ratio in which point \( B \) divides the line segment \( AC \). ### Step 1: Identify the position vectors The position vectors of points \( A \), \( B \), and \( C \) are given as: - \( \vec{A} = 3\hat{i} - y\hat{j} + 2\hat{k} \) - \( \vec{B} = 5\hat{i} - \hat{j} + \hat{k} \) - \( \vec{C} = 3x\hat{i} + 3\hat{j} - \hat{k} \) ### Step 2: Find vectors \( \vec{AB} \) and \( \vec{BC} \) The vector \( \vec{AB} \) is calculated as: \[ \vec{AB} = \vec{B} - \vec{A} = (5\hat{i} - \hat{j} + \hat{k}) - (3\hat{i} - y\hat{j} + 2\hat{k}) \] \[ = (5 - 3)\hat{i} + (-1 + y)\hat{j} + (1 - 2)\hat{k} = 2\hat{i} + (y - 1)\hat{j} - \hat{k} \] The vector \( \vec{BC} \) is calculated as: \[ \vec{BC} = \vec{C} - \vec{B} = (3x\hat{i} + 3\hat{j} - \hat{k}) - (5\hat{i} - \hat{j} + \hat{k}) \] \[ = (3x - 5)\hat{i} + (3 + 1)\hat{j} + (-1 - 1)\hat{k} = (3x - 5)\hat{i} + 4\hat{j} - 2\hat{k} \] ### Step 3: Set up the collinearity condition For points \( A \), \( B \), and \( C \) to be collinear, we have: \[ \vec{AB} = \lambda \vec{BC} \] This gives us the equations: \[ 2\hat{i} + (y - 1)\hat{j} - \hat{k} = \lambda \left( (3x - 5)\hat{i} + 4\hat{j} - 2\hat{k} \right) \] ### Step 4: Equate the coefficients From the above equation, we equate the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \): 1. For \( \hat{i} \): \[ 2 = \lambda (3x - 5) \quad \text{(1)} \] 2. For \( \hat{j} \): \[ y - 1 = 4\lambda \quad \text{(2)} \] 3. For \( \hat{k} \): \[ -1 = -2\lambda \quad \text{(3)} \] ### Step 5: Solve for \( \lambda \) From equation (3): \[ -1 = -2\lambda \implies \lambda = \frac{1}{2} \] ### Step 6: Substitute \( \lambda \) into equations (1) and (2) Substituting \( \lambda = \frac{1}{2} \) into equation (1): \[ 2 = \frac{1}{2}(3x - 5) \implies 4 = 3x - 5 \implies 3x = 9 \implies x = 3 \] Substituting \( \lambda = \frac{1}{2} \) into equation (2): \[ y - 1 = 4 \cdot \frac{1}{2} \implies y - 1 = 2 \implies y = 3 \] ### Step 7: Values of \( x \) and \( y \) Thus, we have: \[ x = 3, \quad y = 3 \] ### Step 8: Find the ratio in which \( B \) divides \( AC \) Let \( B \) divide \( AC \) in the ratio \( m:n \). According to the section formula: \[ \vec{B} = \frac{m\vec{C} + n\vec{A}}{m+n} \] Substituting the values of \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \): \[ 5\hat{i} - \hat{j} + \hat{k} = \frac{m(9\hat{i} + 3\hat{j} - \hat{k}) + n(3\hat{i} - 3\hat{j} + 2\hat{k})}{m+n} \] ### Step 9: Equate coefficients for the ratio Equating coefficients for \( \hat{i} \): \[ 5(m+n) = 9m + 3n \implies 5m + 5n = 9m + 3n \implies 4m = 2n \implies \frac{m}{n} = \frac{1}{2} \] Thus, the ratio \( m:n = 1:2 \). ### Final Answer The values of \( x \) and \( y \) are: \[ x = 3, \quad y = 3 \] The ratio in which point \( B \) divides \( AC \) is: \[ 1:2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

Show that the points A, B and C with position vectors -2hati+3hatj+5hatk, hati+2hatj+3hatk and 7hati-hatk respectively are collinear

Show that the points with position vectors hati+2hatj+7hatk, 2hati+6hatj+3hatk and 3hati+10hatj-hatk are collinear

Knowledge Check

  • If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

    A
    (2, -3)
    B
    (-2, 3)
    C
    (-2, -3)
    D
    (2, 3)
  • The points with position vectors 5hati + 5hatk, -4hati + 3hatj - hatk and 2hati +hatj + 3hatk

    A
    collinear
    B
    non-collinear
    C
    non-collinear and non planar
    D
    non-collinear but coplanar
  • If the vectors 2hati-3hatj+4hatk and hati+2hatj-hatk and m hati - hatj+2hatk are coplanar, then the value of m is

    A
    `(5)/(8)`
    B
    `(8)/(5)`
    C
    `-(7)/(4)`
    D
    `(2)/(3)`
  • Similar Questions

    Explore conceptually related problems

    Find lambda if the vectors hati+hatj+2hatk, lambdahati-hatj+hatk and 3hati-2hatj-hatk are coplanar.

    Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

    Show that the points A,B and C having position vectors (hati + 2hatj + 7hatk),(2hati + 6hatj + 3hatk) , and (3hati + 10 hatj - 3hatk) respectively, are collinear.

    Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

    Vectors 5hati+yhatj+hatk,2hati+2hatj-2hatk and -hati+2hatj+2hatk are coplaner then find the value of y.