Home
Class 12
MATHS
The value of int(pi)^(2pi)[2sinx]dx is e...

The value of `int_(pi)^(2pi)[2sinx]dx` is equal to (where `[.]` represents the greatest integer function)

A

`-pi`

B

`(5pi)/(3)`

C

`(-5pi)/(3)`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\pi}^{2\pi} 2\sin x \, dx \) and find its value using the greatest integer function, we will follow these steps: ### Step 1: Evaluate the Integral We start by evaluating the integral \( \int 2\sin x \, dx \). \[ \int 2\sin x \, dx = -2\cos x + C \] ### Step 2: Set Up the Definite Integral Now we need to evaluate the definite integral from \( \pi \) to \( 2\pi \): \[ \int_{\pi}^{2\pi} 2\sin x \, dx = \left[-2\cos x\right]_{\pi}^{2\pi} \] ### Step 3: Calculate the Values at the Bounds Next, we calculate the values of \( -2\cos x \) at the bounds \( \pi \) and \( 2\pi \): 1. At \( x = 2\pi \): \[ -2\cos(2\pi) = -2(1) = -2 \] 2. At \( x = \pi \): \[ -2\cos(\pi) = -2(-1) = 2 \] ### Step 4: Subtract the Values Now, we subtract the value at the lower limit from the value at the upper limit: \[ \int_{\pi}^{2\pi} 2\sin x \, dx = -2 - 2 = -4 \] ### Step 5: Apply the Greatest Integer Function Finally, we apply the greatest integer function (denoted by \( [.] \)) to the result: \[ \left[-4\right] = -4 \] ### Final Answer Thus, the value of \( \int_{\pi}^{2\pi} 2\sin x \, dx \) is equal to \( -4 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 33

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 35

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

The value of int_(pi)^(2pi) [2 sin x] dx , where [] represents the greatest integer function, is

Knowledge Check

  • int_(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest integer function)

    A
    9
    B
    `16-e`
    C
    `10`
    D
    `10+e`
  • The value of int_0^(12pi) ([sint]+[-sint])dt is equal to (where [.] denotes the greatest integer function )

    A
    `12pi`
    B
    `-12pi`
    C
    `-10pi`
    D
    `-6pi`
  • int_(pi)^(2pi)|sinx|dx=?

    A
    `0`
    B
    `1`
    C
    `2`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of int_(pi)^(2 pi)[2sin x]dx where [.] represents the greatest integer function is

    The value of int_(0)^(2 pi)[2sin x]dx, where [.] represents the greatest integral function,is (a) (-5 pi)/(3)(b)-pi(c)(5 pi)/(3)(d)-2 pi

    The value of int_(pi)^(2 pi)[2cos x]dx where [.] represents the greatest integer function is -

    The value of int_(pi)^(2pi) [ 2 sin x] dx, where [] repreents the greatest integer function, is

    The value of lim_(x to 0) (sinx)/(3) [5/x] is equal to [where [.] represent the greatest integer function)