Home
Class 12
MATHS
If f(x)||2sinx-1|-2cotx|, then the value...

If `f(x)||2sinx-1|-2cotx|`, then the value of `f'((pi)/(3))` is equal to

A

0

B

`-(5)/(3)`

C

`(5)/(3)`

D

`(8)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'\left(\frac{\pi}{3}\right) \) where \( f(x) = |2\sin x - 1 - 2\cot x| \), we will follow these steps: ### Step 1: Evaluate \( f\left(\frac{\pi}{3}\right) \) First, we need to evaluate the expression inside the absolute value at \( x = \frac{\pi}{3} \). \[ f\left(\frac{\pi}{3}\right) = |2\sin\left(\frac{\pi}{3}\right) - 1 - 2\cot\left(\frac{\pi}{3}\right)| \] Calculating \( \sin\left(\frac{\pi}{3}\right) \) and \( \cot\left(\frac{\pi}{3}\right) \): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cot\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}} \] Substituting these values into the function: \[ f\left(\frac{\pi}{3}\right) = |2 \cdot \frac{\sqrt{3}}{2} - 1 - 2 \cdot \frac{1}{\sqrt{3}}| \] \[ = |\sqrt{3} - 1 - \frac{2}{\sqrt{3}}| \] ### Step 2: Simplify the expression To simplify \( \sqrt{3} - 1 - \frac{2}{\sqrt{3}} \): Convert \( \sqrt{3} \) into a common denominator: \[ = |\frac{3}{\sqrt{3}} - 1 - \frac{2}{\sqrt{3}}| = | \frac{3 - 2 - \sqrt{3}}{\sqrt{3}} | = | \frac{1 - \sqrt{3}}{\sqrt{3}} | \] Since \( 1 < \sqrt{3} \), we have \( 1 - \sqrt{3} < 0 \), thus: \[ f\left(\frac{\pi}{3}\right) = -\frac{1 - \sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] ### Step 3: Determine the sign of the expression Since \( f(x) \) is defined as \( |2\sin x - 1 - 2\cot x| \), we need to check the sign of \( 2\sin x - 1 - 2\cot x \) around \( x = \frac{\pi}{3} \). We found that \( 2\sin\left(\frac{\pi}{3}\right) - 1 - 2\cot\left(\frac{\pi}{3}\right) < 0 \). Therefore, in the neighborhood of \( x = \frac{\pi}{3} \): \[ f(x) = 2\cot x - 2\sin x + 1 \] ### Step 4: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(2\cot x - 2\sin x + 1) \] Using the derivatives: \[ f'(x) = 2(-\csc^2 x) - 2\cos x \] \[ = -2\csc^2 x - 2\cos x \] ### Step 5: Evaluate \( f'\left(\frac{\pi}{3}\right) \) Now we substitute \( x = \frac{\pi}{3} \): \[ f'\left(\frac{\pi}{3}\right) = -2\csc^2\left(\frac{\pi}{3}\right) - 2\cos\left(\frac{\pi}{3}\right) \] Calculating \( \csc\left(\frac{\pi}{3}\right) \) and \( \cos\left(\frac{\pi}{3}\right) \): \[ \csc\left(\frac{\pi}{3}\right) = \frac{1}{\sin\left(\frac{\pi}{3}\right)} = \frac{2}{\sqrt{3}}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Substituting these values: \[ f'\left(\frac{\pi}{3}\right) = -2\left(\frac{2}{\sqrt{3}}\right)^2 - 2\left(\frac{1}{2}\right) \] \[ = -2\left(\frac{4}{3}\right) - 1 = -\frac{8}{3} - 1 = -\frac{8}{3} - \frac{3}{3} = -\frac{11}{3} \] Thus, the final answer is: \[ \boxed{-\frac{11}{3}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 34

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to

f(x) and g(x) are two real valued function.If f'(x)=g(x) and g'(x)=f(x)AA x in R and f(3)=5,f'(3)=4 .Then the value of (f^2(pi)-g^(2)(pi)) is equal to

Knowledge Check

  • If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

    A
    1
    B
    `(2sqrt(3)+1)/(4)`
    C
    `sqrt(3)+(1)/(4)`
    D
    0
  • If 2f (x) + 3f (-x) = x^2 - x +1 , then the value of f'(1) is equal to

    A
    `3/5`
    B
    `4/5`
    C
    `6/5`
    D
    `7/5`
  • If f(x)=int_1^xsin^2(t/2)dt , then the value of lim_(xrarr0)(f'(pi+x)-f(x))/x is equal to

    A
    `1/4`
    B
    `1/2`
    C
    `3/4`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If the function y=f(x) satisfies f'(x)+f(x)cot x-2cos x=0,f((pi)/(2))=1 then f((pi)/(3)) is equal to

    If F(k)=(1+sin""(pi)/(2k))(1+sin(k-1)(pi)/(2k))(1+sin(2k+1)(pi)/(2k)),(1+sin(3k-1)(pi)/(2k)) then the value of F(1)+F(2)+F(3) is equal to

    If f(x)=|cosx-sinx|, then f'(pi)/(2) is equal to

    f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

    Let f(x) =log sinx^(2),0lt x lt pi//2 then f''(sqrt(pi)//2) is equal to