Home
Class 12
MATHS
If f(x)||2sinx-1|-2cotx|, then the value...

If `f(x)||2sinx-1|-2cotx|`, then the value of `f'((pi)/(3))` is equal to

A

0

B

`-(5)/(3)`

C

`(5)/(3)`

D

`(8)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'\left(\frac{\pi}{3}\right) \) where \( f(x) = |2\sin x - 1 - 2\cot x| \), we will follow these steps: ### Step 1: Evaluate \( f\left(\frac{\pi}{3}\right) \) First, we need to evaluate the expression inside the absolute value at \( x = \frac{\pi}{3} \). \[ f\left(\frac{\pi}{3}\right) = |2\sin\left(\frac{\pi}{3}\right) - 1 - 2\cot\left(\frac{\pi}{3}\right)| \] Calculating \( \sin\left(\frac{\pi}{3}\right) \) and \( \cot\left(\frac{\pi}{3}\right) \): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cot\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}} \] Substituting these values into the function: \[ f\left(\frac{\pi}{3}\right) = |2 \cdot \frac{\sqrt{3}}{2} - 1 - 2 \cdot \frac{1}{\sqrt{3}}| \] \[ = |\sqrt{3} - 1 - \frac{2}{\sqrt{3}}| \] ### Step 2: Simplify the expression To simplify \( \sqrt{3} - 1 - \frac{2}{\sqrt{3}} \): Convert \( \sqrt{3} \) into a common denominator: \[ = |\frac{3}{\sqrt{3}} - 1 - \frac{2}{\sqrt{3}}| = | \frac{3 - 2 - \sqrt{3}}{\sqrt{3}} | = | \frac{1 - \sqrt{3}}{\sqrt{3}} | \] Since \( 1 < \sqrt{3} \), we have \( 1 - \sqrt{3} < 0 \), thus: \[ f\left(\frac{\pi}{3}\right) = -\frac{1 - \sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] ### Step 3: Determine the sign of the expression Since \( f(x) \) is defined as \( |2\sin x - 1 - 2\cot x| \), we need to check the sign of \( 2\sin x - 1 - 2\cot x \) around \( x = \frac{\pi}{3} \). We found that \( 2\sin\left(\frac{\pi}{3}\right) - 1 - 2\cot\left(\frac{\pi}{3}\right) < 0 \). Therefore, in the neighborhood of \( x = \frac{\pi}{3} \): \[ f(x) = 2\cot x - 2\sin x + 1 \] ### Step 4: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(2\cot x - 2\sin x + 1) \] Using the derivatives: \[ f'(x) = 2(-\csc^2 x) - 2\cos x \] \[ = -2\csc^2 x - 2\cos x \] ### Step 5: Evaluate \( f'\left(\frac{\pi}{3}\right) \) Now we substitute \( x = \frac{\pi}{3} \): \[ f'\left(\frac{\pi}{3}\right) = -2\csc^2\left(\frac{\pi}{3}\right) - 2\cos\left(\frac{\pi}{3}\right) \] Calculating \( \csc\left(\frac{\pi}{3}\right) \) and \( \cos\left(\frac{\pi}{3}\right) \): \[ \csc\left(\frac{\pi}{3}\right) = \frac{1}{\sin\left(\frac{\pi}{3}\right)} = \frac{2}{\sqrt{3}}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Substituting these values: \[ f'\left(\frac{\pi}{3}\right) = -2\left(\frac{2}{\sqrt{3}}\right)^2 - 2\left(\frac{1}{2}\right) \] \[ = -2\left(\frac{4}{3}\right) - 1 = -\frac{8}{3} - 1 = -\frac{8}{3} - \frac{3}{3} = -\frac{11}{3} \] Thus, the final answer is: \[ \boxed{-\frac{11}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 34

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to

f(x) and g(x) are two real valued function.If f'(x)=g(x) and g'(x)=f(x)AA x in R and f(3)=5,f'(3)=4 .Then the value of (f^2(pi)-g^(2)(pi)) is equal to

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If the function y=f(x) satisfies f'(x)+f(x)cot x-2cos x=0,f((pi)/(2))=1 then f((pi)/(3)) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 35-MATHEMATICS
  1. If f(x)||2sinx-1|-2cotx|, then the value of f'((pi)/(3)) is equal to

    Text Solution

    |

  2. Let p: Maths is intersting and q : Maths is easy, then p rArr (~p vv q...

    Text Solution

    |

  3. If f(x)=(x^(2)-[x^(2)])/(1+x^(2)-[x^(2)]) (where [.] represents the gr...

    Text Solution

    |

  4. The area bounded by the curve y=sin^(-1)(sinx) and the x - axis from x...

    Text Solution

    |

  5. If both the roots of the equation x^(2)+(a-1) x+a=0 are positive, the ...

    Text Solution

    |

  6. If f(x)=" min "{(sqrt(9-x^(2)), sqrt(1+x^(2)))}, AA, x in [-3, 3] th...

    Text Solution

    |

  7. Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x...

    Text Solution

    |

  8. Let vecq and vecr be non - collinear vectors, If vecp is a vector such...

    Text Solution

    |

  9. If z(1), z(2) and z(3) are 3 distinct complex numbers such that (3)/(|...

    Text Solution

    |

  10. An ellipse has foci (4, 2), (2, 2) and it passes through the point P (...

    Text Solution

    |

  11. If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is ...

    Text Solution

    |

  12. The value of lim(nrarroo)Sigma(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal ...

    Text Solution

    |

  13. The coefficient of x^(4) in the expansion of (1-x-2x^(2))^(8) is

    Text Solution

    |

  14. The number of roots of the equation tanx+secx=2cosx in [0, 4pi] is

    Text Solution

    |

  15. If a=int(0)^(1)(cos(sinx))/(secx)dx, then the value of a^(2)cos^(2)(si...

    Text Solution

    |

  16. If the largest interval of x in which the function f(x)=x^(3)-3x+1 is ...

    Text Solution

    |

  17. Let P(1)=x+y+z+1=0, P(2)=x-y+2z+1=0,P(3)=3x+y+4z+7=0 be three planes. ...

    Text Solution

    |

  18. If x(1), x(2), x(3)…..x(34) are numbers such that x(i)=x(i+1)=150, AA ...

    Text Solution

    |

  19. Let (x(1), y(1)), (x(2),y(2)), (x(3),y(3)) and (x(4), y(4)) are four p...

    Text Solution

    |

  20. Let P(n) be s square matrix of order 3 such that P(n)=[a(ij)], where a...

    Text Solution

    |