Home
Class 12
MATHS
The domain of the function f(x)=(1)/(sqr...

The domain of the function `f(x)=(1)/(sqrt([x]^(2)-[x]-20))` is (where, `[.]` represents the greatest integer function)

A

`(-oo, -4)uu[6, oo)`

B

`(-oo, 4]uu[6, oo)`

C

`(-oo, 4)uu(6, oo)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{[\![x]\!]^2 - [\![x]\!] - 20}} \), where \([\![x]\!]\) represents the greatest integer function, we need to ensure that the expression inside the square root is positive. This means we need to solve the inequality: \[ [\![x]\!]^2 - [\![x]\!] - 20 > 0 \] ### Step 1: Set up the quadratic inequality The quadratic can be expressed as: \[ t^2 - t - 20 > 0 \] where \( t = [\![x]\!] \). ### Step 2: Factor the quadratic Next, we factor the quadratic: \[ t^2 - t - 20 = (t - 5)(t + 4) \] ### Step 3: Find the critical points Setting the factors equal to zero gives us the critical points: \[ t - 5 = 0 \quad \Rightarrow \quad t = 5 \] \[ t + 4 = 0 \quad \Rightarrow \quad t = -4 \] ### Step 4: Analyze the intervals We need to determine where the product \((t - 5)(t + 4) > 0\). The critical points divide the number line into intervals: 1. \( (-\infty, -4) \) 2. \( (-4, 5) \) 3. \( (5, \infty) \) ### Step 5: Test the intervals - For \( t < -4 \) (e.g., \( t = -5 \)): \[ (-5 - 5)(-5 + 4) = (-10)(-1) > 0 \quad \text{(True)} \] - For \( -4 < t < 5 \) (e.g., \( t = 0 \)): \[ (0 - 5)(0 + 4) = (-5)(4) < 0 \quad \text{(False)} \] - For \( t > 5 \) (e.g., \( t = 6 \)): \[ (6 - 5)(6 + 4) = (1)(10) > 0 \quad \text{(True)} \] ### Step 6: Combine the results The solution to the inequality is: \[ t \in (-\infty, -4) \cup (5, \infty) \] ### Step 7: Translate back to \( x \) Since \( t = [\![x]\!] \), we need to find the corresponding \( x \) values: - For \( t < -4 \): \[ [\![x]\!] \leq -5 \quad \Rightarrow \quad x < -4 \] - For \( t > 5 \): \[ [\![x]\!] \geq 6 \quad \Rightarrow \quad x \geq 6 \] ### Final Domain Thus, the domain of the function \( f(x) \) is: \[ x \in (-\infty, -4) \cup [6, \infty) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 65

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 67

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

Knowledge Check

  • If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

    A
    `underset(xrarr0^(+))(lim)f(x)=-1`
    B
    `underset(xrarr0^(-))(lim)f(x)=0`
    C
    `underset(xrarr0)(lim)f(0)=-1`
    D
    `underset(xrarr0)(lim)f(x)=0`
  • Similar Questions

    Explore conceptually related problems

    The domain of the function f(x)=log_(e){sgn(9-x^(2))}+sqrt([x]^(3)-4[x]) (where Il represents the greatest integer function is

    The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

    " The range of the function "f(x)=sin(sin^(-1)[x^(2)-1])" is (where "[" .] represents greatest integer function) "

    f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

    The domain of the function f(x)=(1)/([x^(2)-1] is (where [.] is greatest integer function)

    The range of the function f(x)=sin(sin^(-1)[x^(2)-1]) is (where[*] represents greatest integer function)

    The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)