Home
Class 12
MATHS
If cos(sin^(-1)'2/5 + cos^(-1)x) = 0, t...

If `cos(sin^(-1)'2/5 + cos^(-1)x) = 0`, then x is equal to

A

`1/5`

B

`2/5`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\sin^{-1} \frac{2}{5} + \cos^{-1} x) = 0 \), we will follow these steps: ### Step 1: Understand the equation We know that \( \cos(A + B) = 0 \) implies \( A + B = \frac{\pi}{2} + n\pi \) for some integer \( n \). In our case, we can set \( A = \sin^{-1} \frac{2}{5} \) and \( B = \cos^{-1} x \). ### Step 2: Set up the equation From the previous step, we can write: \[ \sin^{-1} \frac{2}{5} + \cos^{-1} x = \frac{\pi}{2} \] ### Step 3: Isolate \( \cos^{-1} x \) Rearranging the equation gives us: \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} \frac{2}{5} \] ### Step 4: Use the co-function identity Using the identity \( \cos^{-1} x = \sin^{-1}(\sqrt{1 - x^2}) \), we can rewrite the right-hand side: \[ \cos^{-1} x = \sin^{-1} \left( \sqrt{1 - x^2} \right) \] Thus, we have: \[ \sin^{-1} \left( \sqrt{1 - x^2} \right) = \frac{\pi}{2} - \sin^{-1} \frac{2}{5} \] ### Step 5: Apply the sine function Taking the sine of both sides gives: \[ \sqrt{1 - x^2} = \cos\left(\sin^{-1} \frac{2}{5}\right) \] ### Step 6: Calculate \( \cos(\sin^{-1} \frac{2}{5}) \) Using the Pythagorean identity, we find: \[ \cos(\sin^{-1} y) = \sqrt{1 - y^2} \] Thus: \[ \cos\left(\sin^{-1} \frac{2}{5}\right) = \sqrt{1 - \left(\frac{2}{5}\right)^2} = \sqrt{1 - \frac{4}{25}} = \sqrt{\frac{21}{25}} = \frac{\sqrt{21}}{5} \] ### Step 7: Set up the equation for \( x \) Now we have: \[ \sqrt{1 - x^2} = \frac{\sqrt{21}}{5} \] ### Step 8: Square both sides Squaring both sides results in: \[ 1 - x^2 = \frac{21}{25} \] ### Step 9: Solve for \( x^2 \) Rearranging gives: \[ x^2 = 1 - \frac{21}{25} = \frac{25}{25} - \frac{21}{25} = \frac{4}{25} \] ### Step 10: Find \( x \) Taking the square root of both sides yields: \[ x = \pm \frac{2}{5} \] Since \( \cos^{-1} x \) is defined for \( x \) in the range [0, 1], we take: \[ x = \frac{2}{5} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{2}{5}} \]

To solve the equation \( \cos(\sin^{-1} \frac{2}{5} + \cos^{-1} x) = 0 \), we will follow these steps: ### Step 1: Understand the equation We know that \( \cos(A + B) = 0 \) implies \( A + B = \frac{\pi}{2} + n\pi \) for some integer \( n \). In our case, we can set \( A = \sin^{-1} \frac{2}{5} \) and \( B = \cos^{-1} x \). ### Step 2: Set up the equation From the previous step, we can write: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR|Exercise Integrals|62 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos

Similar Questions

Explore conceptually related problems

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

If cos(sin^(-1)(3/5)+cos^(-1)x)=0 then x is equal to

Knowledge Check

  • If sin(sin^(-1)""1/5 +cos^(-1) x)=1 , then x is equal to

    A
    `4/5`
    B
    1
    C
    0
    D
    `1/5`
  • If sin(sin^(-1) "1/5+ cos^(-1)x)=1 then x is equal to

    A
    1
    B
    0
    C
    `4/5`
    D
    `1/5`
  • If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    A
    1
    B
    0
    C
    `4//5`
    D
    `1//5`
  • Similar Questions

    Explore conceptually related problems

    If cos(sin^(-1)((2)/(5))+cos^(-1)x)=0 find the value of x.

    If cos^(-1) x-sin^(-1)x=0 , then x is equal to

    If sin ("sin"^(-1)(1)/(5)+ "cos"^(-1)x)=1 , then what is x equal to ?

    If sin^(-1) x + sin^(-1) y=(2 pi)/(3) and cos^(-1) x - cos^(-1) y=(pi)/(3) . Then, (x,y) is equal to

    cos(2cos^(-1)x) + cos(2sin^(-1)x) =0 for