Home
Class 12
MATHS
verify that int(2x-1)/(2x+3)dx = x - log...

verify that `int(2x-1)/(2x+3)dx = x - log|(2x+3)^(2)|+C`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let `I = fint(2x-1)/(2x+3)dx = int(2x+3-3-1)/(2x+3)dx`
`=int1dx-4int(1)/(2x+3)dx x- int(4)/(2(x+3/2))dx`
` =x-2log+|(x+3/2)|C'=x-2|((2x+3)/(2))|+C'`
`=x - 2log|(2x+3)|+2log2+C'[:'log'(m)/(n)=logm-logn]`
`=x-log|(2x+3)^(2)|+C, [:'C = 2log2+C]`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

int(1)/(2x+x log x)dx

int_(x)^(1)x ln(1+2x)dx

int_(2)^(3)log(x-1)/(x-1)dx

int(1)/(2x+log(x^(x)))dx=

inte^(3x)(log2x+(1)/(x))dx=

int(log x)^(3/2)/(x)dx

int((2+log x)^(3))/(x)dx

Prove that : int 1/(a^(2)-x^(2)) dx = 1/(2a) log |(a+x)/(a-x)|+c.

If int(4x+1)/(x^(2)+3x+2)dx =a log |x+1|+blog |x+2| +C , then