Home
Class 12
MATHS
int(x^2e^(x))/((x+2)^(2))dx is equal to...

`int(x^2e^(x))/((x+2)^(2))dx` is equal to

A

`((x-1)/(x+2))e^(x)+c`

B

`((x-2)/(x+2))e^(x-1)+c`

C

`((x-2)/(x+2))e^(x)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2 e^x}{(x+2)^2} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral:** We start with the integral: \[ I = \int \frac{x^2 e^x}{(x+2)^2} \, dx \] We can manipulate the numerator by adding and subtracting 4: \[ I = \int \frac{x^2 - 4 + 4}{(x+2)^2} e^x \, dx \] This can be rewritten as: \[ I = \int \frac{(x^2 - 4) + 4}{(x+2)^2} e^x \, dx \] 2. **Factor the Quadratic:** Notice that \( x^2 - 4 \) can be factored: \[ x^2 - 4 = (x+2)(x-2) \] Thus, we can rewrite the integral as: \[ I = \int \left( \frac{(x+2)(x-2)}{(x+2)^2} + \frac{4}{(x+2)^2} \right) e^x \, dx \] Simplifying gives: \[ I = \int \left( \frac{x-2}{x+2} + \frac{4}{(x+2)^2} \right) e^x \, dx \] 3. **Split the Integral:** Now we can split the integral into two parts: \[ I = \int \frac{x-2}{x+2} e^x \, dx + \int \frac{4}{(x+2)^2} e^x \, dx \] 4. **Use Integration by Parts:** For the first integral \( \int \frac{x-2}{x+2} e^x \, dx \), we can use integration by parts. Let: \[ u = \frac{x-2}{x+2}, \quad dv = e^x \, dx \] Then, we differentiate and integrate: \[ du = \left( \frac{(x+2)(1) - (x-2)(1)}{(x+2)^2} \right) \, dx = \frac{4}{(x+2)^2} \, dx, \quad v = e^x \] Applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives: \[ \int \frac{x-2}{x+2} e^x \, dx = \frac{x-2}{x+2} e^x - \int e^x \cdot \frac{4}{(x+2)^2} \, dx \] 5. **Combine the Integrals:** Now substituting back into our expression for \( I \): \[ I = \left( \frac{x-2}{x+2} e^x - \int e^x \cdot \frac{4}{(x+2)^2} \, dx \right) + \int \frac{4}{(x+2)^2} e^x \, dx \] The two integrals involving \( \frac{4}{(x+2)^2} e^x \) cancel out: \[ I = \frac{x-2}{x+2} e^x + C \] ### Final Answer: Thus, the integral evaluates to: \[ \int \frac{x^2 e^x}{(x+2)^2} \, dx = e^x \left( \frac{x-2}{x+2} \right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int(1)/((e^(x)+e^(-x))^(2))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Knowledge Check

  • int(x e^(x))/((1+x)^(2)) dx is equal to

    A
    `(e^(x))/(x+1)+C`
    B
    `e^(x)(x+1)+C`
    C
    `-(e^(x))/((x+1)^(2))+C`
    D
    `(e^(x))/(1+x^(2))+C`
  • int(2)/((e^(x)+e^(-x))^(2))dx is equal to

    A
    `(-e^(-x))/(e^(x)+e^(-x))+C`
    B
    `-(1)/(e^(x)+e^(-x))+C`
    C
    `-(1)/((e^(x)+1)^(2))+C`
    D
    `(1)/(e^(x)-e^(-x))+C`
  • int e^(x)""((x-1)/(x^(2)))dx is equal to

    A
    `(e^(x))/(x^(2)) +c`
    B
    `(-e^(x))/(x^(2))+c`
    C
    `(e^(x))/(x)+c`
    D
    `(-e^(x))/(x)+c`
  • Similar Questions

    Explore conceptually related problems

    int(x)/((x^(2)+1)(x^(2)+2))dx is equal to

    int ((x+3)e^x)/((x+4)^2) dx is equal to

    int((x+3)e^x)/((x+4)^2)dx is equal to

    int (e^(x^(2)) (2x+x^(3)))/((3+x^(2))^(2))dx is equal to :

    inte^(x)((2)/(x)-(2)/(x^(2)))dx is equal to