Home
Class 12
MATHS
Negation of the statement p implies (~q ...

Negation of the statement `p implies (~q ^^r)` is

A

`p ^^ (q vv ~ r)`

B

`~ p (^^ (q vv ~r )`

C

`p vv (q vv ~ r)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the negation of the statement \( p \implies (\neg q \land r) \), we can follow these steps: ### Step 1: Rewrite the Implication The implication \( p \implies (\neg q \land r) \) can be rewritten using the equivalence \( p \implies q \equiv \neg p \lor q \). Thus, we have: \[ p \implies (\neg q \land r) \equiv \neg p \lor (\neg q \land r) \] ### Step 2: Apply De Morgan's Law Next, we need to find the negation of the entire expression: \[ \neg(p \implies (\neg q \land r)) \equiv \neg(\neg p \lor (\neg q \land r)) \] Using De Morgan's Law, we can distribute the negation: \[ \neg(\neg p \lor (\neg q \land r)) \equiv \neg(\neg p) \land \neg(\neg q \land r) \] This simplifies to: \[ p \land \neg(\neg q \land r) \] ### Step 3: Apply De Morgan's Law Again Now, we apply De Morgan's Law to the second part: \[ \neg(\neg q \land r) \equiv \neg(\neg q) \lor \neg r \equiv q \lor \neg r \] Thus, we have: \[ p \land (q \lor \neg r) \] ### Step 4: Final Expression The final expression for the negation of the original statement is: \[ p \land (q \lor \neg r) \] ### Summary The negation of the statement \( p \implies (\neg q \land r) \) is: \[ p \land (q \lor \neg r) \] ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-1|24 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

The statement p implies ~ (p ^^ ~ q) is -

The negation of the statement (p vv q) implies (q vvr)

Negation of the statement p to ( q ^^ r) is

Negation of the statement pto(q^^r) is

The statement (p ^^q) implies ~p is a

Negation of the statement ~ p to (q vv r) is

Negation of the statement (p vv r) rArr (q vv r) is :

Negation of the statement p rarr(p vv sim q) is