Home
Class 12
MATHS
If int(sinx)/(sin(x-alpha))dx=Ax+Blogsin...

If `int(sinx)/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+c` then

A

`A=sinalpha`

B

`B=sinalpha`

C

`A=cosalpha`

D

`B=cosalpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{\sin(x - \alpha)} \, dx \) and express it in the form \( Ax + B \log \sin(x - \alpha) + C \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sin(x - \alpha)} \, dx \] We can rewrite \( \sin x \) using the sine addition formula: \[ \sin x = \sin((x - \alpha) + \alpha) = \sin(x - \alpha) \cos \alpha + \cos(x - \alpha) \sin \alpha \] Thus, we can express our integral as: \[ I = \int \frac{\sin(x - \alpha) \cos \alpha + \cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \, dx \] This simplifies to: \[ I = \int \left( \cos \alpha + \frac{\cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \right) \, dx \] ### Step 2: Separate the Integral Now we separate the integral into two parts: \[ I = \int \cos \alpha \, dx + \int \frac{\cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \, dx \] The first part is straightforward: \[ \int \cos \alpha \, dx = \cos \alpha \cdot x \] ### Step 3: Simplify the Second Integral For the second integral, we can use the identity: \[ \frac{\cos(x - \alpha)}{\sin(x - \alpha)} = \cot(x - \alpha) \] Thus, we have: \[ \int \frac{\cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \, dx = \sin \alpha \int \cot(x - \alpha) \, dx \] The integral of \( \cot(x - \alpha) \) is: \[ \int \cot(x - \alpha) \, dx = \log |\sin(x - \alpha)| + C \] So, we can write: \[ \int \frac{\cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \, dx = \sin \alpha \log |\sin(x - \alpha)| \] ### Step 4: Combine the Results Putting it all together, we have: \[ I = \cos \alpha \cdot x + \sin \alpha \log |\sin(x - \alpha)| + C \] ### Step 5: Identify A and B From the expression \( I = Ax + B \log \sin(x - \alpha) + C \), we can identify: - \( A = \cos \alpha \) - \( B = \sin \alpha \) ### Final Result Thus, we conclude: \[ A = \cos \alpha, \quad B = \sin \alpha \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS|4 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-I)|51 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

If int(sin x)/(sin(x-alpha))dx=Ax+B log sin(x-alpha) , then value of (A,B) is

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)

Knowledge Check

  • If int (sin x)/(sin (x-alpha))dx =Ax+B log sin (x-alpha)+C , then the value of (A,B) , is

    A
    `(-cosalpha, sin alpha)`
    B
    `(cosalpha, sin alpha)`
    C
    `(-sinalpha, cos alpha)`
    D
    `(sinalpha, cos alpha)`
  • int(sinx+cosx)/(sin(x+alpha))dx=

    A
    `x(cosalpha-sinalpha)+(cosalpha+sinalpha)log|sin(x-alpha)|+c`
    B
    `x(cosalpha+sinalpha)+(cosalpha-sinalpha)log|sin(x-alpha)|+c`
    C
    `x(cosalpha+sinalpha)+(cosalpha-sinalpha)log|sin(x+alpha)|+c`
    D
    `x(cosalpha+sinalpha)-(cosalpha-sinalpha)log|sin(x+alpha)|+c`
  • If int (sin x)/(sin (x-a))dx =Ax +B log sin (x-alpha ) +C, then value of (A,B) is:

    A
    `(sin alpha ,cos alpha )`
    B
    `(cos alpha, sin alpha )`
    C
    `(-sin alpha, cos alpha )`
    D
    `(-cos alpha, sin alpha )`
  • Similar Questions

    Explore conceptually related problems

    int(sin x)/(sin(x+alpha)dx)

    int(sin xdx)/(sin(x-alpha))

    int(sin x)/(sin(x-alpha))dx=Ax+B log(sin(x-alpha))+C then find out A&B

    int(cos x)/(cos(x+alpha))dx

    Evaluate : int(sinx)/(sin(x-alpha))dx .