Home
Class 12
MATHS
If int(sinx)/(sin(x-alpha))dx=Ax+Blogsin...

If `int(sinx)/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+c` then

A

`A=sinalpha`

B

`B=sinalpha`

C

`A=cosalpha`

D

`B=cosalpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{\sin(x - \alpha)} \, dx \) and express it in the form \( Ax + B \log \sin(x - \alpha) + C \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sin(x - \alpha)} \, dx \] We can rewrite \( \sin x \) using the sine addition formula: \[ \sin x = \sin((x - \alpha) + \alpha) = \sin(x - \alpha) \cos \alpha + \cos(x - \alpha) \sin \alpha \] Thus, we can express our integral as: \[ I = \int \frac{\sin(x - \alpha) \cos \alpha + \cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \, dx \] This simplifies to: \[ I = \int \left( \cos \alpha + \frac{\cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \right) \, dx \] ### Step 2: Separate the Integral Now we separate the integral into two parts: \[ I = \int \cos \alpha \, dx + \int \frac{\cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \, dx \] The first part is straightforward: \[ \int \cos \alpha \, dx = \cos \alpha \cdot x \] ### Step 3: Simplify the Second Integral For the second integral, we can use the identity: \[ \frac{\cos(x - \alpha)}{\sin(x - \alpha)} = \cot(x - \alpha) \] Thus, we have: \[ \int \frac{\cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \, dx = \sin \alpha \int \cot(x - \alpha) \, dx \] The integral of \( \cot(x - \alpha) \) is: \[ \int \cot(x - \alpha) \, dx = \log |\sin(x - \alpha)| + C \] So, we can write: \[ \int \frac{\cos(x - \alpha) \sin \alpha}{\sin(x - \alpha)} \, dx = \sin \alpha \log |\sin(x - \alpha)| \] ### Step 4: Combine the Results Putting it all together, we have: \[ I = \cos \alpha \cdot x + \sin \alpha \log |\sin(x - \alpha)| + C \] ### Step 5: Identify A and B From the expression \( I = Ax + B \log \sin(x - \alpha) + C \), we can identify: - \( A = \cos \alpha \) - \( B = \sin \alpha \) ### Final Result Thus, we conclude: \[ A = \cos \alpha, \quad B = \sin \alpha \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS|4 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-I)|51 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

If int(sin x)/(sin(x-alpha))dx=Ax+B log sin(x-alpha) , then value of (A,B) is

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)

int(sin x)/(sin(x+alpha)dx)

int(sin xdx)/(sin(x-alpha))

int(sin x)/(sin(x-alpha))dx=Ax+B log(sin(x-alpha))+C then find out A&B

If int (sin x)/(sin (x-alpha))dx =Ax+B log sin (x-alpha)+C , then the value of (A,B) , is

int(sinx+cosx)/(sin(x+alpha))dx=

If int (sin x)/(sin (x-a))dx =Ax +B log sin (x-alpha ) +C, then value of (A,B) is:

int(cos x)/(cos(x+alpha))dx

Evaluate : int(sinx)/(sin(x-alpha))dx .

FIITJEE-INDEFINTE INTEGRAL-ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)
  1. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  2. If I=int(sinx-cosx)/((sinx=cosx)sqrt(sinxcosx+sin^(2)cos^(2))x)dx=cose...

    Text Solution

    |

  3. For x ^ 2 ne n pi + 1, n in N ( the set of natural numb...

    Text Solution

    |

  4. Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx be an increasing f...

    Text Solution

    |

  5. If int((1)/(sin^(2)x))log(cosx+cos2x)dx=cotxlog(cosx+sqrt(cos2x)+P(cos...

    Text Solution

    |

  6. l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to

    Text Solution

    |

  7. I=inttan^(2)(2theta)d""theta is equal to

    Text Solution

    |

  8. l(1)=int2^(x)dx=p(x)+c(1)andl(2)=int((1)/(2))^(x)dx=m(x)+c(1) then p(x...

    Text Solution

    |

  9. If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c the...

    Text Solution

    |

  10. int((1+x^(2))(2+x^2))/((xco sx+sinx)^(4))dx equals

    Text Solution

    |

  11. int(dx)/((1+sqrt(x))^8)=

    Text Solution

    |

  12. Iff^(prime)(x)=1/(-x+sqrt(x^2+1))a n df(0)=(1+sqrt(2))/2t h e nf(1) i...

    Text Solution

    |

  13. If int(sinx)/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+c then

    Text Solution

    |

  14. If intxlog(1+x^(2))dx=A(x).log(1+x^(2))+B(x)+c, then

    Text Solution

    |

  15. If int(sin3theta+sintheta)e^(sintheta)costhetad theta=(Asin^3theta+Bco...

    Text Solution

    |

  16. If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c, then

    Text Solution

    |

  17. int(dx)/(x^(5//6)(1+5x^(1//3))sqrt(1+4x^(1//3)))

    Text Solution

    |

  18. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Psqrt(1-9x^(2))+Q(cos^(-...

    Text Solution

    |

  19. If int(dx)/(x^(22)(x^7-6))=A{ln(p)^6+9p^2-2p^3-18 p}+c, then

    Text Solution

    |

  20. intx^(5)cos^(2)logsqrtxdx=

    Text Solution

    |