Home
Class 12
MATHS
If f be decreasing continuous function s...

If `f` be decreasing continuous function satisfying `f(x + y) = f(x) + f(y)-f(x) f(y) Y x, y epsilon R ,f'(0)=1` then `int_0^1 f(x)dx` is

A

1

B

`1-e`

C

`2-e`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If f be decreasing continuous function satisfying f(x+y)=f(x)+f(y)-f(x)f(y)Yx,y varepsilon R,f'(0)=1 then int_(0)^(1)f(x)dx is

Let f be a continuous function satisfying f(x) f(y)=f(x)+f(y)+f(xy)-2 for all x,y in R and f(2)=5 then lim_(x to 4) f(x) is

Knowledge Check

  • Let f be a continuous function satisfying f(x + y) = f (x) f( y) (x, y in R) with f(1) = e then the value of int(xf(x))/(sqrt(1+f(x)))dx is

    A
    `2xsqrt(1+e^(x))-4sqrt(1+e^(x))-2log|((sqrt(1+e^(x))+1)/(sqrt(1+e^(x))-1)) |+C`
    B
    `2sqrt(1+e^(x))-4sqrt(1+f(x))-2log|sqrt(1+f(x))-1|+C`
    C
    `2sqrt(1+f(x))-4sqrt(1+f(x))-2log|(sqrt(1+f(x))-1)/(sqrt1+f(x))|+C`
    D
    none of these
  • Let f be a continuous function satisfying f (x+y) = f (x) + f (y), for each x, y in R and f(1) = 2 then int(f(x)tan^(-1)x)/((1+x^(2))^(2))dx is equal to

    A
    cannot be determined explicity
    B
    `C-(tan^(-1)x)/(2(1+x^(2)))+(1)/(4)tan^(-1)x+f(x)/(1+(f(x))^2)`
    C
    `C-(1)/((1+x^(2)))tan^(-1)x+(1)/(2)tan^(-1)x+(x)/(2(1x^(2)))`
    D
    `C-(1)/((1+x^(2)))tan^(-1)x+(1)/(2)tan^(-1)x+(x)/(2(1+x^(2)))`
  • IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

    A
    1
    B
    10
    C
    `int_(0)^(1)f(x)dx`
    D
    `10int_(0)^(1)f(x)dx`
  • Similar Questions

    Explore conceptually related problems

    Let f be a continuous function on R satisfying f(x+y) =f(x)f(y) for all x, y in R and f(1)=4 then f(3) is equal to

    Let f be a continuous function satisfying f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5 then lim_(x to 4) f(x) is equal to

    Let f be a continuous function on R satisfying f(x+y)= f(x) + f(y) for all x, y in R with f(1) =2 and g be a function satisfying f(x) + g(x)= e^(x) then the value of the integral int_(0)^(1) f(x) g(x) dx is

    A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

    Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is