Home
Class 11
MATHS
Find the square root of the following : ...

Find the square root of the following :
(i) `3-4i`
(ii) `4+6isqrt(5)`
(iii) `-i`
(iv) `8i`
(v) `-7+24i`
(vi) `-24- 10i`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of the given complex numbers, we will use the method of expressing the square root in the form \( x + iy \) and then equate the real and imaginary parts. ### (i) Find the square root of \( 3 - 4i \) 1. Let \( z = x + iy \). 2. Then, \( z^2 = 3 - 4i \). 3. Expanding \( z^2 \): \[ z^2 = (x + iy)^2 = x^2 - y^2 + 2xyi \] 4. Equate the real and imaginary parts: \[ x^2 - y^2 = 3 \quad (1) \] \[ 2xy = -4 \quad (2) \] 5. From (2), we can express \( y \): \[ y = \frac{-4}{2x} = \frac{-2}{x} \] 6. Substitute \( y \) in (1): \[ x^2 - \left(\frac{-2}{x}\right)^2 = 3 \] \[ x^2 - \frac{4}{x^2} = 3 \] 7. Multiply through by \( x^2 \) to eliminate the fraction: \[ x^4 - 3x^2 - 4 = 0 \] 8. Let \( u = x^2 \): \[ u^2 - 3u - 4 = 0 \] 9. Factor or use the quadratic formula: \[ u = \frac{3 \pm \sqrt{(3)^2 + 4 \cdot 4}}{2} = \frac{3 \pm 5}{2} \] \[ u = 4 \quad \text{or} \quad u = -1 \] (Only \( u = 4 \) is valid since \( u = x^2 \geq 0 \)) 10. Thus, \( x^2 = 4 \) gives \( x = \pm 2 \). 11. Substitute \( x = 2 \) into (2): \[ 2(2)y = -4 \Rightarrow y = -1 \] 12. Therefore, one square root is \( 2 - i \). The other is \( -2 + i \). ### (ii) Find the square root of \( 4 + 6i\sqrt{5} \) 1. Let \( z = x + iy \). 2. Then, \( z^2 = 4 + 6i\sqrt{5} \). 3. Expanding \( z^2 \): \[ z^2 = x^2 - y^2 + 2xyi \] 4. Equate the real and imaginary parts: \[ x^2 - y^2 = 4 \quad (1) \] \[ 2xy = 6\sqrt{5} \quad (2) \] 5. From (2): \[ y = \frac{3\sqrt{5}}{x} \] 6. Substitute \( y \) in (1): \[ x^2 - \left(\frac{3\sqrt{5}}{x}\right)^2 = 4 \] \[ x^2 - \frac{45}{x^2} = 4 \] 7. Multiply through by \( x^2 \): \[ x^4 - 4x^2 - 45 = 0 \] 8. Let \( u = x^2 \): \[ u^2 - 4u - 45 = 0 \] 9. Using the quadratic formula: \[ u = \frac{4 \pm \sqrt{16 + 180}}{2} = \frac{4 \pm 14}{2} \] \[ u = 9 \quad \text{or} \quad u = -5 \] (Only \( u = 9 \) is valid) 10. Thus, \( x^2 = 9 \) gives \( x = \pm 3 \). 11. Substitute \( x = 3 \) into (2): \[ 2(3)y = 6\sqrt{5} \Rightarrow y = \sqrt{5} \] 12. Therefore, one square root is \( 3 + i\sqrt{5} \). The other is \( -3 - i\sqrt{5} \). ### (iii) Find the square root of \( -i \) 1. Let \( z = x + iy \). 2. Then, \( z^2 = -i \). 3. Expanding \( z^2 \): \[ z^2 = x^2 - y^2 + 2xyi \] 4. Equate the real and imaginary parts: \[ x^2 - y^2 = 0 \quad (1) \] \[ 2xy = -1 \quad (2) \] 5. From (1), \( x^2 = y^2 \) implies \( y = \pm x \). 6. Substitute \( y = x \) into (2): \[ 2x^2 = -1 \quad \text{(not possible)} \] Substitute \( y = -x \): \[ 2x(-x) = -1 \Rightarrow -2x^2 = -1 \Rightarrow x^2 = \frac{1}{2} \] 7. Thus, \( x = \pm \frac{1}{\sqrt{2}} \) and \( y = \mp \frac{1}{\sqrt{2}} \). 8. Therefore, the square roots are \( \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i \) and \( -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \). ### (iv) Find the square root of \( 8i \) 1. Let \( z = x + iy \). 2. Then, \( z^2 = 8i \). 3. Expanding \( z^2 \): \[ z^2 = x^2 - y^2 + 2xyi \] 4. Equate the real and imaginary parts: \[ x^2 - y^2 = 0 \quad (1) \] \[ 2xy = 8 \quad (2) \] 5. From (1), \( x^2 = y^2 \) implies \( y = \pm x \). 6. Substitute \( y = x \) into (2): \[ 2x^2 = 8 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2 \] Substitute \( y = -x \): \[ 2x(-x) = 8 \quad \text{(not possible)} \] 7. Therefore, the square roots are \( 2 + 2i \) and \( -2 - 2i \). ### (v) Find the square root of \( -7 + 24i \) 1. Let \( z = x + iy \). 2. Then, \( z^2 = -7 + 24i \). 3. Expanding \( z^2 \): \[ z^2 = x^2 - y^2 + 2xyi \] 4. Equate the real and imaginary parts: \[ x^2 - y^2 = -7 \quad (1) \] \[ 2xy = 24 \quad (2) \] 5. From (2): \[ y = \frac{12}{x} \] 6. Substitute \( y \) in (1): \[ x^2 - \left(\frac{12}{x}\right)^2 = -7 \] \[ x^2 - \frac{144}{x^2} = -7 \] 7. Multiply through by \( x^2 \): \[ x^4 + 7x^2 - 144 = 0 \] 8. Let \( u = x^2 \): \[ u^2 + 7u - 144 = 0 \] 9. Using the quadratic formula: \[ u = \frac{-7 \pm \sqrt{49 + 576}}{2} = \frac{-7 \pm 25}{2} \] \[ u = 9 \quad \text{or} \quad u = -16 \quad \text{(only valid } u = 9\text{)} \] 10. Thus, \( x^2 = 9 \) gives \( x = \pm 3 \). 11. Substitute \( x = 3 \) into (2): \[ 2(3)y = 24 \Rightarrow y = 4 \] 12. Therefore, the square roots are \( 3 + 4i \) and \( -3 - 4i \). ### (vi) Find the square root of \( -24 - 10i \) 1. Let \( z = x + iy \). 2. Then, \( z^2 = -24 - 10i \). 3. Expanding \( z^2 \): \[ z^2 = x^2 - y^2 + 2xyi \] 4. Equate the real and imaginary parts: \[ x^2 - y^2 = -24 \quad (1) \] \[ 2xy = -10 \quad (2) \] 5. From (2): \[ y = \frac{-5}{x} \] 6. Substitute \( y \) in (1): \[ x^2 - \left(\frac{-5}{x}\right)^2 = -24 \] \[ x^2 - \frac{25}{x^2} = -24 \] 7. Multiply through by \( x^2 \): \[ x^4 + 24x^2 - 25 = 0 \] 8. Let \( u = x^2 \): \[ u^2 + 24u - 25 = 0 \] 9. Using the quadratic formula: \[ u = \frac{-24 \pm \sqrt{576 + 100}}{2} = \frac{-24 \pm 26}{2} \] \[ u = 1 \quad \text{or} \quad u = -25 \quad \text{(only valid } u = 1\text{)} \] 10. Thus, \( x^2 = 1 \) gives \( x = \pm 1 \). 11. Substitute \( x = 1 \) into (2): \[ 2(1)y = -10 \Rightarrow y = -5 \] 12. Therefore, the square roots are \( 1 - 5i \) and \( -1 + 5i \). ### Summary of Results: 1. \( \sqrt{3 - 4i} = 2 - i \) or \( -2 + i \) 2. \( \sqrt{4 + 6i\sqrt{5}} = 3 + i\sqrt{5} \) or \( -3 - i\sqrt{5} \) 3. \( \sqrt{-i} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i \) or \( -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \) 4. \( \sqrt{8i} = 2 + 2i \) or \( -2 - 2i \) 5. \( \sqrt{-7 + 24i} = 3 + 4i \) or \( -3 - 4i \) 6. \( \sqrt{-24 - 10i} = 1 - 5i \) or \( -1 + 5i \)

To find the square root of the given complex numbers, we will use the method of expressing the square root in the form \( x + iy \) and then equate the real and imaginary parts. ### (i) Find the square root of \( 3 - 4i \) 1. Let \( z = x + iy \). 2. Then, \( z^2 = 3 - 4i \). 3. Expanding \( z^2 \): \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5A|9 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the square roots of the following: ( i ) 7-24i

Find the square roots of the following: -8-6i

find the square roots of the following: (i) 1-i (ii) 1+i .

Find the square root of 3-4i

find the square roots of the following: (i) 2i (ii) -i

Find the square root of 7+24i

Find the square roots of the following: 7-24i (ii) 5+12i

find the square roots of the following: (i) -8-6i (ii) 5-12i .

Find the square root of -7-24i

Find the square root of -6+8i.