Home
Class 11
MATHS
Convert the following into polar form : ...

Convert the following into polar form :
(i) `-1+isqrt(3)`
(ii) `1-i`
(iii) `1-(1)/(i)`
(iv) `3-4i`
(v) `sin120^(@)-icos120^(@)`
(vi) 2

Text Solution

AI Generated Solution

The correct Answer is:
To convert the given complex numbers into polar form, we will follow these steps for each complex number: 1. Identify the real part \( a \) and the imaginary part \( b \) of the complex number \( z = a + bi \). 2. Calculate the modulus \( r \) using the formula \( r = \sqrt{a^2 + b^2} \). 3. Determine the angle \( \theta \) using the formula \( \theta = \tan^{-1}(\frac{b}{a}) \) and adjust the angle based on the quadrant in which the complex number lies. 4. Write the polar form as \( z = r(\cos \theta + i \sin \theta) \). Now, let's solve each part step by step: ### (i) For the complex number \( -1 + i\sqrt{3} \) 1. Identify \( a = -1 \) and \( b = \sqrt{3} \). 2. Calculate \( r \): \[ r = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] 3. Calculate \( \theta \): \[ \tan \theta = \frac{\sqrt{3}}{-1} \implies \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] 4. Write the polar form: \[ z = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \] ### (ii) For the complex number \( 1 - i \) 1. Identify \( a = 1 \) and \( b = -1 \). 2. Calculate \( r \): \[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] 3. Calculate \( \theta \): \[ \tan \theta = \frac{-1}{1} \implies \theta = \frac{7\pi}{4} \text{ (fourth quadrant)} \] 4. Write the polar form: \[ z = \sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) \] ### (iii) For the complex number \( 1 - \frac{1}{i} \) 1. Simplify \( 1 - \frac{1}{i} = 1 + i \) (since \( \frac{1}{i} = -i \)). 2. Identify \( a = 1 \) and \( b = 1 \). 3. Calculate \( r \): \[ r = \sqrt{1^2 + 1^2} = \sqrt{2} \] 4. Calculate \( \theta \): \[ \tan \theta = \frac{1}{1} \implies \theta = \frac{\pi}{4} \text{ (first quadrant)} \] 5. Write the polar form: \[ z = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \] ### (iv) For the complex number \( 3 - 4i \) 1. Identify \( a = 3 \) and \( b = -4 \). 2. Calculate \( r \): \[ r = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 3. Calculate \( \theta \): \[ \tan \theta = \frac{-4}{3} \implies \theta = \tan^{-1}\left(-\frac{4}{3}\right) \text{ (fourth quadrant)} \] 4. Write the polar form: \[ z = 5\left(\cos(\tan^{-1}(-\frac{4}{3})) + i\sin(\tan^{-1}(-\frac{4}{3}))\right) \] ### (v) For the complex number \( \sin 120^\circ - i \cos 120^\circ \) 1. Rewrite using known values: \[ \sin 120^\circ = \frac{\sqrt{3}}{2}, \quad \cos 120^\circ = -\frac{1}{2} \] Thus, the complex number becomes: \[ \frac{\sqrt{3}}{2} + i\left(-\left(-\frac{1}{2}\right)\right) = \frac{\sqrt{3}}{2} + i\frac{1}{2} \] 2. Identify \( a = \frac{\sqrt{3}}{2} \) and \( b = \frac{1}{2} \). 3. Calculate \( r \): \[ r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] 4. Calculate \( \theta \): \[ \tan \theta = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6} \text{ (first quadrant)} \] 5. Write the polar form: \[ z = 1\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \] ### (vi) For the complex number \( 2 \) 1. Identify \( a = 2 \) and \( b = 0 \). 2. Calculate \( r \): \[ r = \sqrt{2^2 + 0^2} = \sqrt{4} = 2 \] 3. Calculate \( \theta \): \[ \tan \theta = \frac{0}{2} \implies \theta = 0 \] 4. Write the polar form: \[ z = 2\left(\cos 0 + i\sin 0\right) \] ### Summary of Polar Forms 1. \( z = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \) 2. \( z = \sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) \) 3. \( z = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \) 4. \( z = 5\left(\cos(\tan^{-1}(-\frac{4}{3})) + i\sin(\tan^{-1}(-\frac{4}{3}))\right) \) 5. \( z = 1\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \) 6. \( z = 2\left(\cos 0 + i\sin 0\right) \)

To convert the given complex numbers into polar form, we will follow these steps for each complex number: 1. Identify the real part \( a \) and the imaginary part \( b \) of the complex number \( z = a + bi \). 2. Calculate the modulus \( r \) using the formula \( r = \sqrt{a^2 + b^2} \). 3. Determine the angle \( \theta \) using the formula \( \theta = \tan^{-1}(\frac{b}{a}) \) and adjust the angle based on the quadrant in which the complex number lies. 4. Write the polar form as \( z = r(\cos \theta + i \sin \theta) \). Now, let's solve each part step by step: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5E|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5B|28 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Convert the following in polar form: (1+3i)/(1-2i)

Convert the following in polar form, (iii) i(1+i)

Convert the following into polar forms : 1-i,-1+i,-3,sqrt(3)+i

Convert the following in polar form, (iv) (5-i)/(2-3i)

Convert the following in the polar form: (1+7i)/((2-i)^(2))

Give the following in polar form sin 120^@-icos120^@

Convert the following in the polar form : ( i ) (1+7i)/((2-i)^(2)) (ii) (1+3i)/(1-2i)

Convert the following in polar form, (ii) ((sqrt3 -1)-(sqrt3+1)i)/((2sqrt2))

Express the following in the polar form: (i) 1+i (ii) -1-i (iii) 1+sqrt(3)i (iv) (-16)/(1+sqrt(3)i) .

Convert each of the following complex numbers in polar form: (i) -3 (ii) sqrt3+i (iii) i .