Home
Class 11
MATHS
Find the conjugate of ((3-2i)(2+3i))/((1...

Find the conjugate of `((3-2i)(2+3i))/((1+2i)(2-i))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the conjugate of the complex number \(\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}\), we will follow these steps: ### Step 1: Simplify the Numerator First, we need to calculate the numerator \((3-2i)(2+3i)\). \[ (3-2i)(2+3i) = 3 \cdot 2 + 3 \cdot 3i - 2i \cdot 2 - 2i \cdot 3i \] \[ = 6 + 9i - 4i - 6i^2 \] Since \(i^2 = -1\), we substitute: \[ = 6 + 9i - 4i + 6 = 12 + 5i \] ### Step 2: Simplify the Denominator Now, we calculate the denominator \((1+2i)(2-i)\). \[ (1+2i)(2-i) = 1 \cdot 2 + 1 \cdot (-i) + 2i \cdot 2 + 2i \cdot (-i) \] \[ = 2 - i + 4i - 2i^2 \] Substituting \(i^2 = -1\): \[ = 2 - i + 4i + 2 = 4 + 3i \] ### Step 3: Combine the Results Now we have: \[ \frac{(3-2i)(2+3i)}{(1+2i)(2-i)} = \frac{12 + 5i}{4 + 3i} \] ### Step 4: Multiply by the Conjugate of the Denominator To simplify the fraction, we multiply the numerator and denominator by the conjugate of the denominator, which is \(4 - 3i\). \[ \frac{(12 + 5i)(4 - 3i)}{(4 + 3i)(4 - 3i)} \] ### Step 5: Simplify the Numerator Calculating the numerator: \[ (12 + 5i)(4 - 3i) = 12 \cdot 4 + 12 \cdot (-3i) + 5i \cdot 4 + 5i \cdot (-3i) \] \[ = 48 - 36i + 20i - 15i^2 \] Substituting \(i^2 = -1\): \[ = 48 - 36i + 20i + 15 = 63 - 16i \] ### Step 6: Simplify the Denominator Calculating the denominator: \[ (4 + 3i)(4 - 3i) = 4^2 - (3i)^2 = 16 - 9(-1) = 16 + 9 = 25 \] ### Step 7: Final Result Now we can write the simplified form: \[ \frac{63 - 16i}{25} = \frac{63}{25} - \frac{16}{25}i \] ### Step 8: Find the Conjugate The conjugate of a complex number \(a + bi\) is \(a - bi\). Therefore, the conjugate of \(\frac{63}{25} - \frac{16}{25}i\) is: \[ \frac{63}{25} + \frac{16}{25}i \] ### Final Answer The conjugate of \(\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}\) is: \[ \frac{63}{25} + \frac{16}{25}i \]

To find the conjugate of the complex number \(\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}\), we will follow these steps: ### Step 1: Simplify the Numerator First, we need to calculate the numerator \((3-2i)(2+3i)\). \[ (3-2i)(2+3i) = 3 \cdot 2 + 3 \cdot 3i - 2i \cdot 2 - 2i \cdot 3i \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.3|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.1|14 Videos
  • BINOMIAL THEOREM

    NCERT|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the conjugate of 1/(2-5i)

Find the conjugate of i/(3+5i)

Knowledge Check

  • The conjugate of ((1+2i)^(2))/(3-i) is

    A
    `(-13)/10 + 9/10 i`
    B
    `(-13)/10 - 9/10 i`
    C
    `13/10 + 9/10 i`
    D
    `13/10 - 9/10i`
  • Similar Questions

    Explore conceptually related problems

    Find the conjugate of (2-i)/(2+i)

    Find the conjugate of 1/(2 +5i)

    Find the conjugate of ((1-2i)^(2))/(2 + i)

    Find the conjugate of (3+i)/(2+5i)

    Find the conjugate of (2+3i)(3-4i)

    Conjugate of ((1+i)(1+2i))/((1+3i))

    ((1+2i)^(3))/((1+i)(2-i))