Home
Class 12
MATHS
If x sin(a+y)+sina.cos(a+y)=0, then pro...

If `x sin(a+y)+sina.cos(a+y)=0`, then prove that
`(dy)/(dx) = (sin^(2)(a+y))/(sina)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ x \sin(a + y) + \sin a \cos(a + y) = 0 \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \( x \sin(a + y) \): \[ x \sin(a + y) = -\sin a \cos(a + y) \] ### Step 2: Solving for \( x \) Next, we can express \( x \) in terms of \( y \): \[ x = -\frac{\sin a \cos(a + y)}{\sin(a + y)} \] ### Step 3: Differentiating Both Sides Now, we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(x) = \frac{d}{dx}\left(-\frac{\sin a \cos(a + y)}{\sin(a + y)}\right) \] The left-hand side simplifies to: \[ 1 \] ### Step 4: Applying the Quotient Rule on the Right Side For the right-hand side, we will use the quotient rule. Let \( u = \sin a \cos(a + y) \) and \( v = \sin(a + y) \): Using the quotient rule, we have: \[ \frac{d}{dx}\left(-\frac{u}{v}\right) = -\frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] ### Step 5: Finding \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): 1. **For \( u = \sin a \cos(a + y) \)**: - Since \( \sin a \) is a constant, we have: \[ \frac{du}{dx} = \sin a \cdot (-\sin(a + y)) \cdot \frac{dy}{dx} \] 2. **For \( v = \sin(a + y) \)**: - We have: \[ \frac{dv}{dx} = \cos(a + y) \cdot \frac{dy}{dx} \] ### Step 6: Substituting Back into the Quotient Rule Now substituting \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) back into the quotient rule gives: \[ 1 = -\frac{\sin(a + y)(-\sin a \sin(a + y) \frac{dy}{dx}) - \sin a \cos(a + y) \cos(a + y) \frac{dy}{dx}}{\sin^2(a + y)} \] ### Step 7: Simplifying the Equation This simplifies to: \[ 1 = \frac{\sin a \sin^2(a + y) \frac{dy}{dx} + \sin a \cos^2(a + y) \frac{dy}{dx}}{\sin^2(a + y)} \] Factoring out \( \frac{dy}{dx} \): \[ 1 = \frac{\sin a \frac{dy}{dx}}{\sin^2(a + y)} \] ### Step 8: Solving for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a} \] ### Conclusion Thus, we have proven that: \[ \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a} \]

To solve the problem, we start with the given equation: \[ x \sin(a + y) + \sin a \cos(a + y) = 0 \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \( x \sin(a + y) \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin y=sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin (a + y) + sin a * cos (a + y) = 0. Prove that: (dy) / (dx) = ((sin ^ (2) (a + y)) / (sin a))

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

NCERT EXEMPLAR-CONTINUITY AND DIFFERENTIABILITY-Continuity And Differentiability
  1. If y^(x)=e^(y-x), then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

    Text Solution

    |

  2. If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx)...

    Text Solution

    |

  3. If x sin(a+y)+sina.cos(a+y)=0, then prove that (dy)/(dx) = (sin^(2)...

    Text Solution

    |

  4. If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y), then prove that (dy)/(dx) = ...

    Text Solution

    |

  5. If y = tan^(-1)x, then find (d^(2)y)/(dx^(2)) in term of y alone.

    Text Solution

    |

  6. f(x) = x(x-1)^(2) in [0,1]

    Text Solution

    |

  7. f(x) = sin^(4)x+cos^(4)x in [0,(pi)/(2)]

    Text Solution

    |

  8. f(x) = log(x^(2)+2)-log3in [-1,1]

    Text Solution

    |

  9. verify Rolle's theorem for the function f(x)=x(x+3)e^(-x/2) in [-3,0]

    Text Solution

    |

  10. Verify Rolles theorem for the function f(x)=sqrt(4-x^2) on [-2,\ 2]...

    Text Solution

    |

  11. Discuss the applicability of Rolle's theorem on the function given by ...

    Text Solution

    |

  12. Find the points on the curve y = (cosx-1) in [0,2pi], where the tange...

    Text Solution

    |

  13. Using Rolle's theroem, find the point on the curve y = x (x-4), x in ...

    Text Solution

    |

  14. f(x) = 1/(4x-1) in [1,4]

    Text Solution

    |

  15. f(x) = x^(3)-2x^(2)-x+3 in [0,1]

    Text Solution

    |

  16. Values of c of Rolle's theorem for f(x)=sin x-sin 2x on [0,pi]

    Text Solution

    |

  17. f(x)=sqrt(25-x^(2)) in [1,5]

    Text Solution

    |

  18. Find the point on the parabola y=(x-3)^2, where the tangent is p...

    Text Solution

    |

  19. Using mean value theorem, prove that there is a point on the curve y...

    Text Solution

    |

  20. Find the values of p and q , so that f(x)={{:(x^(2)+3x+p, ifxle1),(q...

    Text Solution

    |