Home
Class 12
MATHS
If x sin(a+y)+sina.cos(a+y)=0, then pro...

If `x sin(a+y)+sina.cos(a+y)=0`, then prove that
`(dy)/(dx) = (sin^(2)(a+y))/(sina)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ x \sin(a + y) + \sin a \cos(a + y) = 0 \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \( x \sin(a + y) \): \[ x \sin(a + y) = -\sin a \cos(a + y) \] ### Step 2: Solving for \( x \) Next, we can express \( x \) in terms of \( y \): \[ x = -\frac{\sin a \cos(a + y)}{\sin(a + y)} \] ### Step 3: Differentiating Both Sides Now, we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(x) = \frac{d}{dx}\left(-\frac{\sin a \cos(a + y)}{\sin(a + y)}\right) \] The left-hand side simplifies to: \[ 1 \] ### Step 4: Applying the Quotient Rule on the Right Side For the right-hand side, we will use the quotient rule. Let \( u = \sin a \cos(a + y) \) and \( v = \sin(a + y) \): Using the quotient rule, we have: \[ \frac{d}{dx}\left(-\frac{u}{v}\right) = -\frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] ### Step 5: Finding \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): 1. **For \( u = \sin a \cos(a + y) \)**: - Since \( \sin a \) is a constant, we have: \[ \frac{du}{dx} = \sin a \cdot (-\sin(a + y)) \cdot \frac{dy}{dx} \] 2. **For \( v = \sin(a + y) \)**: - We have: \[ \frac{dv}{dx} = \cos(a + y) \cdot \frac{dy}{dx} \] ### Step 6: Substituting Back into the Quotient Rule Now substituting \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) back into the quotient rule gives: \[ 1 = -\frac{\sin(a + y)(-\sin a \sin(a + y) \frac{dy}{dx}) - \sin a \cos(a + y) \cos(a + y) \frac{dy}{dx}}{\sin^2(a + y)} \] ### Step 7: Simplifying the Equation This simplifies to: \[ 1 = \frac{\sin a \sin^2(a + y) \frac{dy}{dx} + \sin a \cos^2(a + y) \frac{dy}{dx}}{\sin^2(a + y)} \] Factoring out \( \frac{dy}{dx} \): \[ 1 = \frac{\sin a \frac{dy}{dx}}{\sin^2(a + y)} \] ### Step 8: Solving for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a} \] ### Conclusion Thus, we have proven that: \[ \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a} \]

To solve the problem, we start with the given equation: \[ x \sin(a + y) + \sin a \cos(a + y) = 0 \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \( x \sin(a + y) \): \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR|Exercise Application Of Integrals|68 Videos
  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos

Similar Questions

Explore conceptually related problems

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin y=sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin (a + y) + sin a * cos (a + y) = 0. Prove that: (dy) / (dx) = ((sin ^ (2) (a + y)) / (sin a))

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)