Home
Class 12
MATHS
evaluate: |(x^(2)-x+1, x-1),(x+1,x+1)|...

evaluate: `|(x^(2)-x+1, x-1),(x+1,x+1)|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ D = \begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} \] we will follow these steps: ### Step 1: Write down the determinant We start with the determinant as given: \[ D = \begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} \] ### Step 2: Apply the determinant formula The formula for a 2x2 determinant is given by: \[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \] In our case, \( a = x^2 - x + 1 \), \( b = x - 1 \), \( c = x + 1 \), and \( d = x + 1 \). ### Step 3: Calculate \( ad \) and \( bc \) Now we will calculate \( ad \) and \( bc \): 1. Calculate \( ad \): \[ ad = (x^2 - x + 1)(x + 1) = x^3 + x^2 - x^2 - x + x + 1 = x^3 + 1 \] 2. Calculate \( bc \): \[ bc = (x - 1)(x + 1) = x^2 - 1 \] ### Step 4: Substitute into the determinant formula Now we substitute \( ad \) and \( bc \) back into the determinant formula: \[ D = ad - bc = (x^3 + 1) - (x^2 - 1) \] ### Step 5: Simplify the expression Now we simplify the expression: \[ D = x^3 + 1 - x^2 + 1 = x^3 - x^2 + 2 \] ### Final Result Thus, the value of the determinant is: \[ D = x^3 - x^2 + 2 \] ---

To evaluate the determinant \[ D = \begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

Find the value of |[x^(2)-x+1,x-1],[x+1,x+1]|

Find the value of x if |(x^2-x+1,x+1),(x+1,x+1)| =0

Find the value of x if |(x^2-x+1,x+1),(x+1,x+1)| =0

Evaluate lim_(x to 1) (x^3-1)/(x^2-1)

Find lim_(x to 1) f(x) , where f(x)={{:(x^(2)-1,xle1),(-x^(2)-1,xgt1):}

Find the value of : ( x^(1/2 ) + x^(-1/2 ) ) times ( x^(1/4 ) + x^(-1/4 ) ) times ( x^(1/8 ) + x^(-1/8 ) ) times ( x^(1/8 ) - x^(-1/8 ) ) ( a ) x + 1/x ( b ) ( x^2 -1 )/x

Evaluate: int_(1)^(2)(1)/((x+1)(x+2))dx( ii) int_(1)^(2)(1)/(x(1+x^(2)))dx

Evaluate: int(1)/((x-1)(x+1)(x+2))dx

Find the value of ( x - 1/x )( x + 1/x ) ( x^2 + 1/x^2 ) =

Evaluate : x + 1/x= 4 , x^2 + 1/x^2