If xyz=m and det `p=|{:(x,y,z),(z,x,y),(y,z,x):}|` , where p is an orthogonal matrix. The value of `x^(-1)+y^(-1)+z^(-1)` is
A
`pm""m`
B
`pm1`
C
0
D
`m^2`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem step by step, we will analyze the given determinant and the properties of the orthogonal matrix.
### Step 1: Understand the determinant
We are given the determinant \( p = \begin{vmatrix} x & y & z \\ z & x & y \\ y & z & x \end{vmatrix} \). We need to evaluate this determinant.
### Step 2: Calculate the determinant
Using the determinant formula for a 3x3 matrix, we have:
\[
\text{det}(p) = x \begin{vmatrix} x & y \\ z & x \end{vmatrix} - y \begin{vmatrix} z & y \\ y & x \end{vmatrix} + z \begin{vmatrix} z & x \\ y & z \end{vmatrix}
\]
Calculating each of the 2x2 determinants:
1. \( \begin{vmatrix} x & y \\ z & x \end{vmatrix} = x^2 - yz \)
2. \( \begin{vmatrix} z & y \\ y & x \end{vmatrix} = zx - y^2 \)
3. \( \begin{vmatrix} z & x \\ y & z \end{vmatrix} = z^2 - xy \)
Substituting these back into the determinant:
\[
\text{det}(p) = x(x^2 - yz) - y(zx - y^2) + z(z^2 - xy)
\]
\[
= x^3 - xyz - (yzx - y^3) + z^3 - xyz
\]
\[
= x^3 + y^3 + z^3 - 3xyz
\]
### Step 3: Use the orthogonal matrix property
Since \( p \) is an orthogonal matrix, we know that \( \text{det}(p) = \pm 1 \). Therefore, we have:
\[
x^3 + y^3 + z^3 - 3xyz = \pm 1
\]
### Step 4: Express \( x^3 + y^3 + z^3 \)
Using the identity for the sum of cubes, we can express \( x^3 + y^3 + z^3 \) in terms of \( xyz \):
\[
x^3 + y^3 + z^3 = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz) + 3xyz
\]
Let \( s_1 = x+y+z \), \( s_2 = xy + xz + yz \), and \( s_3 = xyz \). We can rewrite:
\[
x^3 + y^3 + z^3 = s_1(s_1^2 - 3s_2) + 3s_3
\]
### Step 5: Set up the equation
From the orthogonal condition, we have:
\[
s_1(s_1^2 - 3s_2) + 3s_3 - 3s_3 = \pm 1
\]
This simplifies to:
\[
s_1(s_1^2 - 3s_2) = \pm 1
\]
### Step 6: Find \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \)
We need to find \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \):
\[
\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{xy + xz + yz}{xyz} = \frac{s_2}{s_3}
\]
Given \( xyz = m \) and from our earlier calculations, we found \( s_2 = 0 \). Thus:
\[
\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{0}{m} = 0
\]
### Final Answer
The value of \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) is \( 0 \).
Topper's Solved these Questions
DETERMINANT
FIITJEE|Exercise MATCH THE COLUMNS|5 Videos
DETERMINANT
FIITJEE|Exercise NUMERICAL BASED|3 Videos
DETERMINANT
FIITJEE|Exercise COMPREHENSIONS -II|3 Videos
DEFINITE INTEGRAL
FIITJEE|Exercise NUMERICAL BASED|3 Videos
ELLIPSE
FIITJEE|Exercise NUMERICAL BASED|4 Videos
Similar Questions
Explore conceptually related problems
If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. The value of x^3+y^3+z^3 can be
If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. If y=x=z, then z is equal to
prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz
If xyz=(1-x)(1-y)(1-z) Where 0<=x,y,z<=1, then the minimum value of x(1-z)+y(1-x)+z(1-y) is
If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z
If x, y, z are in H.P., then the value of (x+y)/(y-x)+(y+z)/(y-z) is