Home
Class 12
MATHS
If xyz=m and det p=|{:(x,y,z),(z,x,y),(y...

If xyz=m and det `p=|{:(x,y,z),(z,x,y),(y,z,x):}|` , where p is an orthogonal matrix.
The value of `x^(-1)+y^(-1)+z^(-1)` is

A

`pm""m`

B

`pm1`

C

0

D

`m^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given determinant and the properties of the orthogonal matrix. ### Step 1: Understand the determinant We are given the determinant \( p = \begin{vmatrix} x & y & z \\ z & x & y \\ y & z & x \end{vmatrix} \). We need to evaluate this determinant. ### Step 2: Calculate the determinant Using the determinant formula for a 3x3 matrix, we have: \[ \text{det}(p) = x \begin{vmatrix} x & y \\ z & x \end{vmatrix} - y \begin{vmatrix} z & y \\ y & x \end{vmatrix} + z \begin{vmatrix} z & x \\ y & z \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} x & y \\ z & x \end{vmatrix} = x^2 - yz \) 2. \( \begin{vmatrix} z & y \\ y & x \end{vmatrix} = zx - y^2 \) 3. \( \begin{vmatrix} z & x \\ y & z \end{vmatrix} = z^2 - xy \) Substituting these back into the determinant: \[ \text{det}(p) = x(x^2 - yz) - y(zx - y^2) + z(z^2 - xy) \] \[ = x^3 - xyz - (yzx - y^3) + z^3 - xyz \] \[ = x^3 + y^3 + z^3 - 3xyz \] ### Step 3: Use the orthogonal matrix property Since \( p \) is an orthogonal matrix, we know that \( \text{det}(p) = \pm 1 \). Therefore, we have: \[ x^3 + y^3 + z^3 - 3xyz = \pm 1 \] ### Step 4: Express \( x^3 + y^3 + z^3 \) Using the identity for the sum of cubes, we can express \( x^3 + y^3 + z^3 \) in terms of \( xyz \): \[ x^3 + y^3 + z^3 = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz) + 3xyz \] Let \( s_1 = x+y+z \), \( s_2 = xy + xz + yz \), and \( s_3 = xyz \). We can rewrite: \[ x^3 + y^3 + z^3 = s_1(s_1^2 - 3s_2) + 3s_3 \] ### Step 5: Set up the equation From the orthogonal condition, we have: \[ s_1(s_1^2 - 3s_2) + 3s_3 - 3s_3 = \pm 1 \] This simplifies to: \[ s_1(s_1^2 - 3s_2) = \pm 1 \] ### Step 6: Find \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) We need to find \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \): \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{xy + xz + yz}{xyz} = \frac{s_2}{s_3} \] Given \( xyz = m \) and from our earlier calculations, we found \( s_2 = 0 \). Thus: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{0}{m} = 0 \] ### Final Answer The value of \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) is \( 0 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise MATCH THE COLUMNS|5 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -II|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y,z<=1, then the minimum value of x(1-z)+y(1-x)+z(1-y) is

Knowledge Check

  • If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. The value of x^3+y^3+z^3 can be

    A
    `6m pm1`
    B
    `3m pm1`
    C
    `pm 3m`
    D
    none of these
  • If xyz= m and det p [{:( x,y,z),(z,x,y),(y,z,x) :}] where P is an orthogonal matrix the value of x^(-10 ) y^(-12),z^(-12) +x^(12), y^(12) , z^(-10 ) can be

    A
    1
    B
    `m^(-12) `
    C
    `m^(-10 ) `
    D
    ` m^(10 ) `
  • If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. If y=x=z, then z is equal to

    A
    `pm 1root/3`
    B
    `pm 5/3`
    C
    `pm 2/3`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

    If |(y+z,z,y),(z,z+x,x),(y,x,x+y)| = k xyz, then k =

    If x + y + z=xyz and x,y,z gt 0 , then the value of tan^(-1)x + tan^(-1)y + tan^(-1)z is equal to

    If x, y, z are in H.P., then the value of (x+y)/(y-x)+(y+z)/(y-z) is

    If x, y, z are in A.P., then the value of (x + y - z) (y + z - x) is