Home
Class 12
MATHS
The value of (Bsqrt2)/(pi)int(0)^(1)((1-...

The value of `(Bsqrt2)/(pi)int_(0)^(1)((1-x^(2))/(1+x^(2)))(dx)/(sqrt(1+x^(4)))` is _____________

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise COMPREHENSION II:|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The value of (8sqrt2)/(pi)int_(0)^(1)((1-x^(2))/(1+x^(2)))(dx)/(sqrt(1+x^(4))) is _____________

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

int_(0)^( pi)(x)/((1+x)(1+x^(2)))dx

The value of int_(-4)^(4)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx is

The value of int_(0)^(1)cos^(-1)(x-x^(2))-sqrt((1-x^(2))(2x-x^(2)))dx is equal to ___________.

int_(0)^( pi/8)(1)/(1+4x^(2))dx=?

int_(0)^(1//sqrt(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx=

7(int_(0)^(1)(x^(4)(1-x)^(4)dx)/(1+x^(2))+pi) is equal to

int_(0)^(1)(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx is

int_(0)^(1/sqrt2)(dx)/(sqrt(1-x^(2)))