Home
Class 12
MATHS
The value of the integral int(-1)^(1)(dx...

The value of the integral `int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x))` is equal to

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \frac{dx}{(1+x^2)(1+e^x)}, \] we can use a property of definite integrals. This property states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx. \] In our case, we have \( a = -1 \) and \( b = 1 \), so \( a + b = 0 \). Thus, we can rewrite the integral as: \[ I = \int_{-1}^{1} \frac{dx}{(1+x^2)(1+e^x)} = \int_{-1}^{1} \frac{dx}{(1+(-x)^2)(1+e^{-x})}. \] Since \( (-x)^2 = x^2 \), we can simplify this to: \[ I = \int_{-1}^{1} \frac{dx}{(1+x^2)(1+e^{-x})}. \] Now we can express \( e^{-x} \) in terms of \( e^x \): \[ I = \int_{-1}^{1} \frac{e^x \, dx}{(1+x^2)(e^x + 1)}. \] Now we have two expressions for \( I \): 1. \( I = \int_{-1}^{1} \frac{dx}{(1+x^2)(1+e^x)} \) 2. \( I = \int_{-1}^{1} \frac{e^x \, dx}{(1+x^2)(1+e^x)} \) Adding these two equations gives: \[ 2I = \int_{-1}^{1} \left( \frac{1}{(1+x^2)(1+e^x)} + \frac{e^x}{(1+x^2)(1+e^x)} \right) dx. \] This simplifies to: \[ 2I = \int_{-1}^{1} \frac{1 + e^x}{(1+x^2)(1+e^x)} \, dx = \int_{-1}^{1} \frac{1}{1+x^2} \, dx. \] Now we can compute the integral: \[ \int_{-1}^{1} \frac{1}{1+x^2} \, dx. \] This integral can be evaluated using the fact that \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x). \] Thus, we have: \[ \int_{-1}^{1} \frac{1}{1+x^2} \, dx = \tan^{-1}(1) - \tan^{-1}(-1) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}. \] So, we find that: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}. \] Thus, the value of the integral is \[ \boxed{\frac{\pi}{4}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 103

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 106

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

Knowledge Check

  • The value of the integral int_(-1)^(1) (x-[2x]) dx,is

    A
    1
    B
    0
    C
    2
    D
    4
  • The value of the integral int_(-a)^(a) (xe^(x^(2)))/(1+x^(2))dx is

    A
    `e^(a^(2))`
    B
    0
    C
    `e^(-a^(2))`
    D
    a
  • The value of integral int_(-1)^(1)(|x+2|)/(x+2) dx is

    A
    1
    B
    2
    C
    0
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

    The value of integral int_(-1)^(1) (|x+2|)/(x+2)dx is

    The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

    The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

    Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to