Home
Class 12
MATHS
Suppose that vec p,vecqand vecr are thr...

Suppose that `vec p,vecqand vecr` are three non- coplaner in `R^(3)` ,Let the components of a vector`vecs` along `vecp , vec q and vecr` be 4,3, and 5, respectively , if the components this vector `vec s` along `(-vecp+vec q +vecr),(vecp-vecq+vecr) and (-vecp-vecq+vecr)` are x, y and z , respectively , then the value of `2x+y+z` is

Text Solution

Verified by Experts

The correct Answer is:
`(9)`

(9) According to question `vecs=4vecp+3vecq+5vecr`
`and vecs=x(-vecp+vecq+vecr)+y(vecp-vecq+vecr)+z(-vecp-vecq+vecr)`
`therefore -x+y-z=4`
`x-y-z=3`
`x+y+z=5`
Adding (1) and (2) , we get
`z=-(7)/(2)`
Adding (2) and (3) , we get
`x=4`
Adding (1) and (3) , we get
`y=9//2`
`therefore 2x+y+z=2(4)+1=9`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE|Exercise chapter -2 multiple correct answers type|2 Videos
  • JEE 2019

    CENGAGE|Exercise matching column type|2 Videos
  • JEE 2019

    CENGAGE|Exercise Matching coluumn type|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos

Similar Questions

Explore conceptually related problems

Suppose that vecp, vecq and vecr are three non-coplanar vectors in R^(3) . Let the components of a vectors vecs along vecp, vecq and vecr be 4, 3 and 5, respectively. If the components of this vector vecs along (-vecp + vecq + vecr), (vecp- vecq+ vecr) and (- vecp- vecq + vecr) are x, y and z , respectively, then the value of 2x+y +z is

Suppose that vec p, vec q and vec r are three non-coplanar vectors in R^3. Let the components of a vector vec s along vec p, vec q and vec r be 4, 3 and 5, respectively. If the components of this vector vec s along (-vec p+vec q +vec r), (vec p-vec q+vec r) and (-vec p-vec q+vec r) are x, y and z, respectively, then the value of 2vec x+vec y+vec z is

Knowledge Check

  • If vecP -vecQ - vecR=0 and the magnitudes of vecP, vecQ and vecR are 5 , 4 and 3 units respectively, the angle between vecP and vecR is

    A
    `cos ^(-1) (3/5)`
    B
    `cos^(-1) (4/5)`
    C
    `pi/2`
    D
    `sin^(-1) (3/4)`
  • If vecpxxvecq=vecr and vecp.vecq=c , then vecq is

    A
    `(cvecp-vecpxxvecr)/(|vecp|^(2))`
    B
    `(cvecp+vecpxxvecr)/(|vecp|^(2))`
    C
    `(cvecr-vecpxxvecr)/(|vecp|^(2))`
    D
    `(cvecr+vecpxxvecr)/(|vecp|^(2))`
  • If vecp,vecq and vecr are perpendicular to vecq + vecr , vec r + vecp and vecp + vecq respectively and if |vecp +vecq| = 6, |vecq + vecr| = 4sqrt3 and |vecr +vecp| = 4 then |vecp + vecq + vecr| is

    A
    `5sqrt2`
    B
    10
    C
    15
    D
    5
  • Similar Questions

    Explore conceptually related problems

    If three points (2 vecp-vecq+3 vecr),(vecp-2 vecq+alpha vecr) and (beta vecp-5 vecq) (where vecp, barq, vecr are non-coplanar vectors) are collinear, then the value of 1/(alpha+beta) is

    Find the angle between two vectors vecp and vecq are 4,3 with respectively and when vecp.vecq =5 .

    If x and y components of a vector vecP have numberical values 5 and 6 respectively and that of vecP + vecQ have magnitudes 10 and 9, find the magnitude of vecQ

    For two vectors vecP and vecQ , show that (vecP+vecQ)xx(vecP-vecQ)=2(vecQxxvecP)

    Let vecq and vecr be non - collinear vectors, If vecp is a vector such that vecp.(vecq+vecr)=4 and vecp xx(vecq xx vecr)=(x^(2)-2x+9)vecq" then " +(siny)vecr (x, y) lies on the line