Home
Class 12
MATHS
Let vecx,vecy and vecz be three vector ...

Let `vecx,vecy and vecz` be three vector each of magnitude `sqrt(2)` and the angle between each pair of them is `(pi)/(3).` if `veca` is a non - zero vector perpendicular to `vecx and vecy xxvecz and vecb` is a non-zero vector perpendicular to `vecy and vecz xx vecx,` then

A

`vecb=(vecb.vecz)(vecz-vecx)`

B

`veca=(veca.vecy)(vecy-vecz)`

C

`veca.vecb=-(veca.vecy)(vecb.vecz)`

D

`veca=(veca.vecy)(vecz-vecy)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

a,,b., c. According to the question
`vecx.vecz=vecx.vecy=vecy.vecz=sqrt(2).sqrt(2). cos ""(pi)/(3)=1`
Given `veca` is perpendicular to `vecx and vecyxxvecz`
`therefore veca =lamda_(1)(vecx xx(vecyxx vecz))`
`implies veca=lamda_(1) ((vecx.vecz)vecY-(vecx . vecy)vecz)`
`implies veca=lamda_(1) (vecy-vecz)`
Now` veca. vecy = lamda _(1) ( vecy. vecy- vecy.vecz) = lamda_(1) (2-1) `
` implies lamda_(1) = veca . vecy`
From (1) and (2) , `veca= ( veca. vecy) ( vecy- vexz)`
Similarly , ` vecb = ( vecb. vecz)( vecz - vecx) `
Now , `veca. vecb =(vecb. vecz) [ ( vecy-vecz).( vecz- vecx)]`
`= ( veca . vecy) (vecb. vecz) [1-1-2+1]`
` =- ( veca. vecy) ( vecb. vecz) `
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE|Exercise matching column type|2 Videos
  • JEE 2019

    CENGAGE|Exercise chapter -3 multiple correct answers type|2 Videos
  • JEE 2019

    CENGAGE|Exercise Integer Answer type|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos

Similar Questions

Explore conceptually related problems

Let x, y and z be three vectors each of magnitude V2 tion on and the angle between each pair of them is E. If a is a let non-zero vector perpendicular to x and yx z and b is a non-zero tor perpendicular to y and z x x, then 1.

If two non-zero vectors are perpendicular to each other then their Scalar product is equal to ?

Knowledge Check

  • Let vecx, vecy and vecz be three vectors each of magnitude sqrt(2) and the angle between each pair of them is pi/3 . If veca is a non-zero vector perpendicular to vecx and vecyxxvecz and vecb is a non zero vector perpendicular to vecy and veczxxvecx then

    A
    `vecb=(vecb.vecz)(vecz-vecx)`
    B
    `veca=(veca.vecy)(vecy-vecz)`
    C
    `veca.vecb=-(veca.vecy)(vecb.vecz)`
    D
    `veca=(veca.vecy)(vecz-vecy)`
  • Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

    A
    `vecb= (vecb.vecz) (vecz-vecx) `
    B
    `veca= (veca.vecy)(vecy - vecz)`
    C
    `veca.vecb=-(veca.vecy) (vecb.vecz)`
    D
    `veca= (veca.vecy)(vecz- vecy)`
  • Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

    A
    `vecb= (vecb.vecz) (vecz-vecx) `
    B
    `veca= (veca.vecy)(vecy - vecz)`
    C
    `veca.vecb=-(veca.vecy) (vecb.vecz)`
    D
    `veca= (veca.vecy)(vecz- vecy)`
  • Similar Questions

    Explore conceptually related problems

    Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb .

    if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .

    Let veca, vecb , vecc be three vectors of equal magnitude such that the angle between each pair is pi/3 . If |veca + vecb + vec| = sqrt6 , " then " |veca|=

    If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

    If veca is perpendicular to vecb and vecr is a non-zero vector such that pvecr + (vecr.vecb)veca=vecc , then vecr is: