Let `vecx,vecy and vecz` be three vector each of magnitude `sqrt(2)` and the angle between each pair of them is `(pi)/(3).` if `veca` is a non - zero vector perpendicular to `vecx and vecy xxvecz and vecb` is a non-zero vector perpendicular to `vecy and vecz xx vecx,` then
A
`vecb=(vecb.vecz)(vecz-vecx)`
B
`veca=(veca.vecy)(vecy-vecz)`
C
`veca.vecb=-(veca.vecy)(vecb.vecz)`
D
`veca=(veca.vecy)(vecz-vecy)`
Text Solution
Verified by Experts
The correct Answer is:
A, B, C
a,,b., c. According to the question `vecx.vecz=vecx.vecy=vecy.vecz=sqrt(2).sqrt(2). cos ""(pi)/(3)=1` Given `veca` is perpendicular to `vecx and vecyxxvecz` `therefore veca =lamda_(1)(vecx xx(vecyxx vecz))` `implies veca=lamda_(1) ((vecx.vecz)vecY-(vecx . vecy)vecz)` `implies veca=lamda_(1) (vecy-vecz)` Now` veca. vecy = lamda _(1) ( vecy. vecy- vecy.vecz) = lamda_(1) (2-1) ` ` implies lamda_(1) = veca . vecy` From (1) and (2) , `veca= ( veca. vecy) ( vecy- vexz)` Similarly , ` vecb = ( vecb. vecz)( vecz - vecx) ` Now , `veca. vecb =(vecb. vecz) [ ( vecy-vecz).( vecz- vecx)]` `= ( veca . vecy) (vecb. vecz) [1-1-2+1]` ` =- ( veca. vecy) ( vecb. vecz) `
Let vecx, vecy and vecz be three vectors each of magnitude sqrt(2) and the angle between each pair of them is pi/3 . If veca is a non-zero vector perpendicular to vecx and vecyxxvecz and vecb is a non zero vector perpendicular to vecy and veczxxvecx then
Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then
Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then
Let x, y and z be three vectors each of magnitude V2 tion on and the angle between each pair of them is E. If a is a let non-zero vector perpendicular to x and yx z and b is a non-zero tor perpendicular to y and z x x, then 1.
Let veca, vecb , vecc be three vectors of equal magnitude such that the angle between each pair is pi/3 . If |veca + vecb + vec| = sqrt6 , " then " |veca|=
If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then
If veca is perpendicular to vecb and vecr is a non-zero vector such that pvecr + (vecr.vecb)veca=vecc , then vecr is:
If two non-zero vectors are perpendicular to each other then their Scalar product is equal to ?
Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb .
if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .
CENGAGE-JEE 2019-chapter -2 multiple correct answers type