Home
Class 12
MATHS
If y = int(4)^(4x^(2))t^(4)e^(4t)dt, fin...

If `y = int_(4)^(4x^(2))t^(4)e^(4t)dt`, find `(d^(2)y)/(dx^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the second derivative of \( y \) defined as \[ y = \int_{4}^{4x^2} t^4 e^{4t} \, dt, \] we will apply the Fundamental Theorem of Calculus and the Chain Rule. ### Step 1: Differentiate \( y \) with respect to \( x \) Using the Fundamental Theorem of Calculus, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \int_{4}^{4x^2} t^4 e^{4t} \, dt \right). \] By the theorem, we have: \[ \frac{dy}{dx} = f(4x^2) \cdot \frac{d(4x^2)}{dx}, \] where \( f(t) = t^4 e^{4t} \). Calculating \( \frac{d(4x^2)}{dx} \): \[ \frac{d(4x^2)}{dx} = 8x. \] Thus, we get: \[ \frac{dy}{dx} = f(4x^2) \cdot 8x = (4x^2)^4 e^{4(4x^2)} \cdot 8x. \] ### Step 2: Simplify \( \frac{dy}{dx} \) Now we simplify \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = 8x (4x^2)^4 e^{16x^2} = 8x \cdot 256x^8 e^{16x^2} = 2048x^9 e^{16x^2}. \] ### Step 3: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(2048x^9 e^{16x^2}). \] Using the product rule: \[ \frac{d^2y}{dx^2} = 2048 \left( \frac{d}{dx}(x^9) e^{16x^2} + x^9 \frac{d}{dx}(e^{16x^2}) \right). \] Calculating \( \frac{d}{dx}(x^9) \): \[ \frac{d}{dx}(x^9) = 9x^8. \] Calculating \( \frac{d}{dx}(e^{16x^2}) \) using the chain rule: \[ \frac{d}{dx}(e^{16x^2}) = e^{16x^2} \cdot \frac{d}{dx}(16x^2) = e^{16x^2} \cdot 32x. \] Putting it all together: \[ \frac{d^2y}{dx^2} = 2048 \left( 9x^8 e^{16x^2} + x^9 \cdot 32x e^{16x^2} \right). \] ### Step 4: Factor out common terms Factoring out \( e^{16x^2} \): \[ \frac{d^2y}{dx^2} = 2048 e^{16x^2} \left( 9x^8 + 32x^{10} \right). \] ### Final Result Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = 2048 e^{16x^2} (9x^8 + 32x^{10}). \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

If y = int_(0)^(x^(2))ln(1+t) , then find (d^(2)y)/(dx^(2))

If y=log(1+2t^(2)+t^(4)),x=tan^(-1)t," find "(d^(2)y)/(dx^(2)) .

Knowledge Check

  • If t=(x^(4)+cotx), find (d^(2)y)/(dx^(2)) .

    A
    `(12x^(2)+3"cosec"^(2)xcot x)`
    B
    `(12x^(2)+2"cosec"^(3)xcot x)`
    C
    `(12x^(3)+2"cosec"^(2)xcot x)`
    D
    `(12x^(2)+2"cosec"^(2)xcot x)`
  • If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

    A
    2y
    B
    4y
    C
    8y
    D
    6y
  • If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2))(xy gt0) then (d^(2)y)/(dx^(2)) is equal

    A
    `1//x^(3)`
    B
    `2//x^(3)`
    C
    `2sqrt(2)//x^(3)`
    D
    `2sqrt(2)//x^(4)`
  • Similar Questions

    Explore conceptually related problems

    If y=e^(4x) sin 3x , find (d^(2)y)/(dx^(2)).

    If y=3at^(2);x=5bt^(4) ,find (d^(2)y)/(dx^(2)) at t=1

    int(t^(2)+1)/(t^(4))dt

    y=int_(1)^(x)x.sqrt(ln t)dt. Find the value of (d^(2)y)/(dx^(2)) at x=e

    If x=int_(0)^(y)(dt)/(sqrt(1+9t^(2))) and (d^(2)y)/(dx^(2))=ay, then find a