Home
Class 12
MATHS
If int(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = ...

If `int_(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6)`, then x can be equal to :

A

`2/(sqrt(3))`

B

`sqrt(3)`

C

`2`

D

`(4)/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - 1|30 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

If int_(1)^(x)(dt)/(|t|sqrt(t^(2)-1))=(pi)/(6) then x can be equal to

If int_(ln2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6), then x=

Knowledge Check

  • If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

    A
    ln 1
    B
    ln 2
    C
    ln 3
    D
    ln 4
  • If x int_(0)^(y) (dt)/(sqrt(1+9t^(2))) then (dy)/(dx) is equal to

    A
    `(1)/(sqrt(1+9y^(2)))`
    B
    `sqrt(1+9y^(2))`
    C
    `(1+ 9y^(2))`
    D
    `(1)/(1+ 9y^(2))`
  • If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to

    A
    `(7)/(4sqrt17`
    B
    `(15)/(sqrt17)`
    C
    `sqrt(257)`
    D
    `(15sqrt17)/(68)`
  • Similar Questions

    Explore conceptually related problems

    int(dt)/(t+sqrt(a^(2)-t^(2)))

    int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

    If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

    int_(0)^(1)t^(2)sqrt(1-t)*dt

    If lim_(x rarr0)int_(0)^(x)(t^(2)dt)/((x-sin x)sqrt(a+t))=1, then a is equal to