Home
Class 12
MATHS
Evaluate lim(xto-2^(+)) (x^(2)-1)/(2x+4)...

Evaluate `lim_(xto-2^(+)) (x^(2)-1)/(2x+4).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to -2^{+}} \frac{x^2 - 1}{2x + 4} \), we will follow these steps: ### Step 1: Substitute \( x = -2 + h \) We will substitute \( x \) with \( -2 + h \) where \( h \) approaches \( 0 \) from the positive side (since we are looking at the right-hand limit). \[ \lim_{h \to 0^{+}} \frac{(-2 + h)^2 - 1}{2(-2 + h) + 4} \] ### Step 2: Simplify the numerator Now we simplify the numerator: \[ (-2 + h)^2 - 1 = (4 - 4h + h^2) - 1 = h^2 - 4h + 3 \] ### Step 3: Simplify the denominator Now we simplify the denominator: \[ 2(-2 + h) + 4 = -4 + 2h + 4 = 2h \] ### Step 4: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{h \to 0^{+}} \frac{h^2 - 4h + 3}{2h} \] ### Step 5: Factor the numerator Next, we factor the numerator \( h^2 - 4h + 3 \): \[ h^2 - 4h + 3 = (h - 1)(h - 3) \] ### Step 6: Rewrite the limit again Now we can rewrite the limit: \[ \lim_{h \to 0^{+}} \frac{(h - 1)(h - 3)}{2h} \] ### Step 7: Evaluate the limit Now we can evaluate the limit as \( h \) approaches \( 0 \): \[ \frac{(-1)(-3)}{2 \cdot 0} = \frac{3}{0} \] Since we are approaching from the right, \( 2h \) approaches \( 0^{+} \), thus \( \frac{3}{0^{+}} \) approaches \( +\infty \). ### Conclusion Thus, the limit is: \[ \lim_{x \to -2^{+}} \frac{x^2 - 1}{2x + 4} = +\infty \]

To evaluate the limit \( \lim_{x \to -2^{+}} \frac{x^2 - 1}{2x + 4} \), we will follow these steps: ### Step 1: Substitute \( x = -2 + h \) We will substitute \( x \) with \( -2 + h \) where \( h \) approaches \( 0 \) from the positive side (since we are looking at the right-hand limit). \[ \lim_{h \to 0^{+}} \frac{(-2 + h)^2 - 1}{2(-2 + h) + 4} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto2) (x^(2)-5x+6)/(x^(2)-4).

Evaluate lim_(xto0^(-)) (x^(2)-3x+2)/(x^(3)-2x^(2)).

Knowledge Check

  • Evaluate lim_(xto 1//2) ((4x^(2)-1))/((2x-1)) .

    A
    2
    B
    3
    C
    0
    D
    1
  • Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

    A
    6
    B
    3
    C
    9
    D
    none of the above
  • Similar Questions

    Explore conceptually related problems

    Evaluate lim_(xto2)(x^(3)-2^(3))/(x-2)

    Evaluate lim_(xto1)(x^(2)-3x+2)/(x-1)

    Evaluate lim_(xto2) (x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

    Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).

    Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

    Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).