Home
Class 12
MATHS
If |f(x)|lex^(2), then prove that lim(xt...

If `|f(x)|lex^(2),` then prove that `lim_(xto0) (f(x))/(x)=0.`

Text Solution

Verified by Experts

We have `|f(x)|lex^(2)`
`:." "|(f(x))/(x)|le|x|`
`implies" "underset(xto0)lim|(f(x))/(x)|leunderset(xto0)lim|x|`
`implies" "|underset(xto0)lim(f(x))/(x)|le0`
`implies" "|underset(xto0)lim(f(x))/(x)|=0`
`implies" "underset(xto0)lim(f(x))/(x)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

If f(x) = e^(x) , then lim_(xto0) (f(x))^((1)/({f(x)})) (where { } denotes the fractional part of x) is equal to -

If f(x)=(1)/(|x|) prove that lim_(x rarr0)f(x) does not

What is lim_(xto0)(a^(x)-b^(x))/(x) ?