Home
Class 12
MATHS
lim(xto0) [(sin(sgn(x)))/((sgn(x)))], wh...

`lim_(xto0) [(sin(sgn(x)))/((sgn(x)))],` where `[.]` denotes the greatest integer function, is equal to

A

`^(2n)p_(n)`

B

`^(2n)C_(n)`

C

`(2n)!`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(xto0^(+))lim[(sin(sgnx))/(sgn(x))]=underset(xto0^(+))lim[(sin1)/(1)]=0`
`underset(xto0^(-))lim[(sin(sgnx))/(sgn(x))]`
`=underset(xto0^(-))lim[sin(-1)/(-1)]`
`=underset(xto0^(-))lim[sin1]`
Hence, the given limit is 0.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Knowledge Check

  • lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

    A
    -1
    B
    4
    C
    5
    D
    None of these
  • lim_(x rarr 1) [ x-1] where [] denotes the greatest integer function is equal to

    A
    1
    B
    2
    C
    0
    D
    Does not exist
  • Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

    A
    `(1)/(3)`
    B
    `(1)/(4)`
    C
    `(1)/(2)`
    D
    `(2)/(3)`
  • Similar Questions

    Explore conceptually related problems

    lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(where [-] denotes greatest integer function) is equal to

    lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

    lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

    lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

    lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to