Home
Class 12
MATHS
The value of int(0)^(1)(tan^(-1)x)/(cot^...

The value of `int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx` is____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{\tan^{-1} x}{\cot^{-1}(1 - x + x^2)} \, dx, \] we will follow these steps: ### Step 1: Simplify the denominator We know that \[ \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y. \] Thus, we can rewrite the denominator: \[ \cot^{-1}(1 - x + x^2) = \frac{\pi}{2} - \tan^{-1}(1 - x + x^2). \] ### Step 2: Rewrite the integral Substituting this into the integral gives: \[ I = \int_{0}^{1} \frac{\tan^{-1} x}{\frac{\pi}{2} - \tan^{-1}(1 - x + x^2)} \, dx. \] ### Step 3: Use the property of definite integrals We can use the property of definite integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \(a = 0\) and \(b = 1\), so we have: \[ I = \int_{0}^{1} \frac{\tan^{-1}(1 - x)}{\cot^{-1}(1 - (1 - x) + (1 - x)^2)} \, dx. \] ### Step 4: Simplify the new integral Now, simplify the new integral: \[ 1 - (1 - x) + (1 - x)^2 = 1 - 1 + x + (1 - 2x + x^2) = x^2 - x + 1. \] Thus, we have: \[ I = \int_{0}^{1} \frac{\tan^{-1}(1 - x)}{\cot^{-1}(x^2 - x + 1)} \, dx. \] ### Step 5: Combine the two integrals Now we have two expressions for \(I\): 1. \( I = \int_{0}^{1} \frac{\tan^{-1} x}{\cot^{-1}(1 - x + x^2)} \, dx \) 2. \( I = \int_{0}^{1} \frac{\tan^{-1}(1 - x)}{\cot^{-1}(x^2 - x + 1)} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{1} \left( \frac{\tan^{-1} x + \tan^{-1}(1 - x)}{\cot^{-1}(1 - x + x^2)} \right) \, dx. \] ### Step 6: Use the identity for arctangent Using the identity: \[ \tan^{-1} x + \tan^{-1}(1 - x) = \frac{\pi}{4}, \] we can simplify: \[ 2I = \int_{0}^{1} \frac{\frac{\pi}{4}}{\cot^{-1}(1 - x + x^2)} \, dx. \] ### Step 7: Evaluate the integral Now, since \(\cot^{-1}(1 - x + x^2)\) is a continuous function over the interval \([0, 1]\), we can evaluate: \[ 2I = \frac{\pi}{4} \int_{0}^{1} \frac{1}{\cot^{-1}(1 - x + x^2)} \, dx. \] ### Step 8: Solve for \(I\) Finally, we can solve for \(I\): \[ I = \frac{1}{2} \int_{0}^{1} 1 \, dx = \frac{1}{2} \cdot (1 - 0) = \frac{1}{2}. \] Thus, the value of the integral is \[ \boxed{\frac{1}{2}}. \]

To solve the integral \[ I = \int_{0}^{1} \frac{\tan^{-1} x}{\cot^{-1}(1 - x + x^2)} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx=

2int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)cot^(-1)(1-x+x^(2))dx

int(tan^(-1)x cot^(-1)x)/(1+x^(2))dx

int(tan^(-1)x+cot^(-1)x)/(1+x^(2))dx

Evaluate: int_(0)^(1)x(tan^(-1)x)^(2)dx

int_(0)^(1)x tan^(-1)x dx=

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

CENGAGE-DEFINITE INTEGRATION -Exercise (Numerical)
  1. The value of int0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)t...

    Text Solution

    |

  2. L e tf(x)=x^3=(3x^2)/2+x+1/4 Then the value of (int(1/4)^(3/4)f(f(x))...

    Text Solution

    |

  3. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx is.

    Text Solution

    |

  4. Let f(x) be differentiate function symmetric about x=2, then the value...

    Text Solution

    |

  5. Let f:[0,oo)vecR be a continuous strictly increasing function, such th...

    Text Solution

    |

  6. If f is continuous function and F(x)=int0^x((2t+3)dotintt^2f(u)d u)dt ...

    Text Solution

    |

  7. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  8. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  9. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  10. If int0^oox^(2n+1)dote^(-xdx)=360 , then the value of n is

    Text Solution

    |

  11. Let f(x) be a derivable function satisfying f(x)=int0^x e^tsin(x-t)dt...

    Text Solution

    |

  12. Let f(x)=1/x^2 int0^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  13. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  14. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11))i se q u a lto

    Text Solution

    |

  15. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  16. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dxa n dK=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  17. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  18. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  19. Iff(x)=x+int0^1t(x+t)f(t)dt ,t h e nt h ev a l u eof(23)/2f(0) is ...

    Text Solution

    |

  20. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |