Home
Class 12
MATHS
Let f be a non-negative function defined...

Let f be a non-negative function defined on the interval .[0,1].If `int_0^x sqrt[1-(f'(t))^2].dt`=`int_0^x f(t).dt`, `0<=x<=1` and f(0)=0,then

A

`f(1/2)lt 1/2` and `f(1/3)gt 1/3`

B

`f(1/2)gt 1/2` and `f(1/3)gt1/3`

C

`f(1/2)lt1/2` and `f(1/3)lt1/3`

D

`f(1/2)gt 1/2` and `f(1/3)lt 1/3`

Text Solution

Verified by Experts

The correct Answer is:
C

`f'=+-sqrt(1-f^(2))`
or `f(x)=sinx `or `f'(x)=-sinx` (not possible)
`:. f(x)=sinx`
Also `xgtsinxAAxgt0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a non-negative function defined on the interval [0,1] . If int_0^xsqrt(1-(f\'(t))^2)dt=int_0^xf(t)dt, 0lexle1 and f(0)=0 , then (A) f(1/2)lt1/2 and f(1/3)gt1/3 (B) f(1/2)gt1/2 and f(1/3)gt1/3 (C) f(1/2)lt1/2 and f(1/3)lt1/3 (D) f(1/2)gt1/2 and f(1/3)lt1/3

Let f be a non-negative function defined on the interval [0,1]dot If int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n df(0)=0,t h e n (A)f(1/2) 1/3 (B)f(1/2)>1/2a n df(1/3)>1/3 (C)f(1/2) 1/2a n df(1/3)<1/3

Knowledge Check

  • Let f be a non-negative function defined on the interval [0,1],ifint_0^xsqrt(1-[f'(t)]^2dt=int_0^xf(t)dt,0lexle1 and f(0)=0, then

    A
    `f(1/2)lt1/2` and `f(1/3)gt1/3`
    B
    `f(1/2)gt1/2` and `f(1/3)gt1/3`
    C
    `f(1/2)lt1/2` and `f(1/3)lt1/3`
    D
    `f(1/2)gt1/2` and `f(1/3)lt1/3`
  • Let f be a real valued function defined on the interval [0,infty] by f(x) = logx + int_(0)^(x) sqrt(1+ sin t).dt then which is (are) true:

    A
    `f''(x)` exists `AA x in [0, infty]`
    B
    `f'(x)` exists `AA x in [0,pi]` and f' is continous on `[0, infty]` but not differentiable on `[0, infty]`
    C
    `alpha gt 1` such that `|f'(x)| lt |f(x)| AA x in [alpha, infty|`
    D
    `3 beta gt 0` such that `|f(x)| + |f'(x)| le beta AA x in [0, infty]`
  • Let f(x)=int_(0)^(x)f (t) dt equals

    A
    `5int_(x+5)^(5)g(t)dt`
    B
    `int_(5)^(x+5)f(t)dt`
    C
    `2int_(5)^(x+5)f(t)dt`
    D
    `int_(x+5)^(5)g(t)dt`
  • Similar Questions

    Explore conceptually related problems

    Let f be a non-negative function in [0, 1] and twice differentiate in (0, 1). If int_0^x sqrt(1-(f'(t))^(2))dt=int_0^x f(t)dt , 0 lexle1 and f(0)=0 then the value of lim_(x to0)int_0^xf(t)/x^2 dt is

    Let f be a function defined on the interval [0,2pi] such that int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt and f(0)=1 . Then the maximum value of f(x) is…………………..

    Let f(x) be a non constant function such that int _(0) ^(x) (f (t))^(3) dt = (1)/(x ^(2))(int _(0) ^(x) (f(t)dt ) ) ^(3) AA x in R- {0} If f(1)=1 then f((1)/(2))=

    Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then

    If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is