Home
Class 12
MATHS
[{:(,x^(2)+x,-1),(,3,2):}]+[{:(,0,-1),(,...

`[{:(,x^(2)+x,-1),(,3,2):}]+[{:(,0,-1),(,-x+1,x):}]=[{:(,0,-2),(,5,1):}]` then x is equalto-

A

`-1`

B

2

C

`4`

D

No value of x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation involving matrices, we start with the given equation: \[ \begin{pmatrix} x^2 + x & -1 \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ -x + 1 & x \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 5 & 1 \end{pmatrix} \] ### Step 1: Add the two matrices on the left side. We add the corresponding elements of the two matrices: \[ \begin{pmatrix} x^2 + x + 0 & -1 + (-1) \\ 3 + (-x + 1) & 2 + x \end{pmatrix} = \begin{pmatrix} x^2 + x & -2 \\ 4 - x & 2 + x \end{pmatrix} \] ### Step 2: Set the resulting matrix equal to the right side. Now we equate the resulting matrix to the matrix on the right side: \[ \begin{pmatrix} x^2 + x & -2 \\ 4 - x & 2 + x \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 5 & 1 \end{pmatrix} \] ### Step 3: Equate the corresponding elements. From the equality of the matrices, we have the following equations: 1. \(x^2 + x = 0\) 2. \(-2 = -2\) (This is always true and doesn't provide information) 3. \(4 - x = 5\) 4. \(2 + x = 1\) ### Step 4: Solve the equations. **From the first equation:** \[ x^2 + x = 0 \implies x(x + 1) = 0 \] This gives us two solutions: \[ x = 0 \quad \text{or} \quad x = -1 \] **From the third equation:** \[ 4 - x = 5 \implies -x = 1 \implies x = -1 \] **From the fourth equation:** \[ 2 + x = 1 \implies x = 1 - 2 \implies x = -1 \] ### Conclusion The common solution from all equations is: \[ x = -1 \] Thus, the value of \(x\) is \(-1\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-2|20 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If [{:(1, x, 1):}] [{:(1, 2,3),(0,5,1),(0,3,2):}] [{:(x), (1),(-2):}]=O, then x =

If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(1),(1),(x)]=O then x equals to

Knowledge Check

  • If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

    A
    ` (-2,3) `
    B
    ` (2,-3) `
    C
    ` ( -3,2) `
    D
    `( 3,-2) `
  • If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(x),(1),(-2)]=[0] then x is

    A
    `-(1)/(2)`
    B
    `(1)/(2)`
    C
    1
    D
    -1
  • [1 x 1 ] [{:(1, 3,2),(2, 5, 1),(15, 3, 2):}] [{:(1),(2),(x):}] = 0, if x =

    A
    `- 7 `
    B
    `-11`
    C
    `-2`
    D
    14
  • Similar Questions

    Explore conceptually related problems

    If A is a square matrix of any order then |A-x|=0 is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if A=[(1,2),(1,5)], Then [(A-xI)], = [(1,2),(1,5)]-[(x,0),(0,x)]=[(1-x,2),(1-0,5-x)]=[(1-x,2),(1,5-x)] Characteristic equation of matrix A is |(1-x,2),(1,5-x)|=0 or (1-x)(5-x)(0-2)=0 or x^2-6x+3=0 Matrix A will satisfy this equation ie. A^2-6A+3I=0 A^-1 can be determined by multiplying both sides of this equation let A=[(1,0,0),(0,1,1),(1,-2,4)] On the basis for above information answer the following questions:Sum of elements of A^-1 is (A) 2 (B) -2 (C) 6 (D) none of these

    find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0

    " If the trace of the matrix: "A=[[-1,0,2,5],[3,x^(2)-2,4,1],[-1,-2,x-3,1],[2,0,4,x^(2)-6]]" is "0" then "x" is equal to "

    If |{:(x, 2, 3),(2,3,x),(3 , x,2):}| = |{:(1, x, 4),(x,4,1),(4 , 1,x):}| = |{:(0, 5, x),(5,x,0),(x, 0,5):}| = 0, then the value x equals (x in R )

    If the trace of the matrix A=[(x-1,0,2,5),(3,x^2-2,4,1),(-1,-2,x-3,1),(2,0,4,x^2-6)] is 0, then x is equal to