Home
Class 12
MATHS
Let det A=|{:(l,m,n),(p,q,r),(1,1,1):}| ...

Let det `A=|{:(l,m,n),(p,q,r),(1,1,1):}|` and if `(l-m)^2 + (p-q)^2 =9, (m-n)^2 + (q-r)^2=16, (n-l)^2 +(r-p)^2=25`, then the value `("det." A)^2` equals :

A

36

B

100

C

144

D

160

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\text{det } A)^2\) given the determinant of matrix \(A\) defined as: \[ A = \begin{pmatrix} l & m & n \\ p & q & r \\ 1 & 1 & 1 \end{pmatrix} \] And the conditions provided are: 1. \((l - m)^2 + (p - q)^2 = 9\) 2. \((m - n)^2 + (q - r)^2 = 16\) 3. \((n - l)^2 + (r - p)^2 = 25\) ### Step 1: Identify the lengths of the sides of the triangle From the conditions, we can interpret them as the squares of the lengths of the sides of a triangle: - Let \(AB\) be the distance between points \(A(l, p)\) and \(B(m, q)\): \[ AB^2 = (l - m)^2 + (p - q)^2 = 9 \implies AB = 3 \] - Let \(BC\) be the distance between points \(B(m, q)\) and \(C(n, r)\): \[ BC^2 = (m - n)^2 + (q - r)^2 = 16 \implies BC = 4 \] - Let \(CA\) be the distance between points \(C(n, r)\) and \(A(l, p)\): \[ CA^2 = (n - l)^2 + (r - p)^2 = 25 \implies CA = 5 \] ### Step 2: Calculate the semi-perimeter of the triangle The semi-perimeter \(s\) of triangle \(ABC\) is given by: \[ s = \frac{AB + BC + CA}{2} = \frac{3 + 4 + 5}{2} = 6 \] ### Step 3: Calculate the area of triangle \(ABC\) using Heron's formula Using Heron's formula, the area \(A\) of triangle \(ABC\) is: \[ \text{Area} = \sqrt{s(s - AB)(s - BC)(s - CA)} \] Substituting the values: \[ \text{Area} = \sqrt{6 \times (6 - 3) \times (6 - 4) \times (6 - 5)} = \sqrt{6 \times 3 \times 2 \times 1} = \sqrt{36} = 6 \] ### Step 4: Relate the area to the determinant The determinant of matrix \(A\) can be related to the area of triangle \(ABC\) by the formula: \[ \text{det } A = 2 \times \text{Area} \] Thus, \[ \text{det } A = 2 \times 6 = 12 \] ### Step 5: Calculate \((\text{det } A)^2\) Finally, we calculate \((\text{det } A)^2\): \[ (\text{det } A)^2 = 12^2 = 144 \] ### Conclusion The value of \((\text{det } A)^2\) is \(144\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Let A=[(l,m,n),(p,q,r),(1,1,1)] and B=A^(2) . If (l-m)^(2)+(p-q)^(2)=9, (m-n)^(2)+(q-r)^(2)=16, (n-l)^(2)+(r-p)^(2)=25 , then the value of |det(B)-140| is_______

If sum_(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q , then find the value of (p+q) .

Let P=[(2alpha),(5),(-3alpha^(2))] and Q=[(2l,-m,5n)] are two matrices, where l, m, n, alpha in R , then the value of determinant PQ is equal to

If k=1,l=2,m=0,p=3,q=4,r=5 then find the values of (3k^2)/p^2 and (kr^k)/q^l

Simplify: (2.5p-1.5q)^(2)-(1.5p-2.5q)^(2)(m^(2)-n^(2)m)^(2)+2m^(3)n^(2)

If cos^(-1)p+cos^(-1)q+cos^(-1)r=pi(0<=p,q,r<=1) then the value of p^(2)+q^(2)+r^(2)+2pqr is