Home
Class 12
MATHS
Let f(a,b)=|{:(a,a^2,0),(1,(2a+b),(a+b)^...

Let `f(a,b)=|{:(a,a^2,0),(1,(2a+b),(a+b)^2),(0,1,(2a+3b)):}|`, then

A

(2a+b) is a factor of f(a,b)

B

(a+2b) is a factor of f(a,b)

C

(a+b) is a factor of f(a,b)

D

a is factor of f (a,b)

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|11 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|11 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0, 1, 2a+3b)| is divisible by a+b b. a+2b c. 2a+3b d. a^2

if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}], then verify that (i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'

Knowledge Check

  • Let Delta=|(a,a^(2),0),(1,2a+b,(a+b)^(2)),(0,1,2a+3b)| then

    A
    `a + b` is a factor of `Delta`
    B
    `a + 2b` is a factor of `Delta`
    C
    `2a+3b` is a factor of `Delta`
    D
    `a^(2)` is a factor of `Delta`
  • Let A = [{:(2, b,1),(b, b^(2)+1,b),(1, b,2):}], " where "b gt 0 . Then, the maximum value of ("det"(A))/(b) is

    A
    `-sqrt(3)`
    B
    `2-sqrt(3)`
    C
    `2sqrt(3)`
    D
    `sqrt(3)`
  • Let A={:((1,2),(3,4):}) and B={:((a,0),(0,b)):} , where a,b in N , then

    A
    There exist more than one but finite number of B's such that `AB=BA`
    B
    There cannot exist any B such that `AB=BA`
    C
    There exists exactly one B such that `AB=BA`
    D
    There exist infinity may B's such that AB=BA
  • Similar Questions

    Explore conceptually related problems

    Suppose the vectors x_(1), x_(2) and x_(3) are the solutions of the system of linear equations, Ax=b when the vector b on the right side is equal to b_(1), b_(2) and b_(3) respectively. If x_(1)=[(1),(1),(1)], x_(2)=[(0),(2),(1)], x_(3)=[(0),(0),(1)], b_(1)=[(1),(0),(0)], b_(2)=[(0),(2),(0)] and b_(3)=[(0),(0),(2)] , then the determinant of A is equal to :

    if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

    If A=[(n,0 ,0),( 0,n,0),( 0, 0,n)] and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)] , then A B is equal to (A) B (B) n B (C) B^n (D) A+B

    If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

    If ={(a,1),(b,-2),(c,3)},g={(a,-2),(b,0),(c,1)} then f^(2)+g^(2)=