Home
Class 12
MATHS
Consida square matrix A of order 2 which...

Consida square matrix A of order 2 which has its elements as 0, 1, 2 and 4. Let N denotes the number of such matrices.

Text Solution

Verified by Experts

The correct Answer is:
`A to P, Q,T;B to S; C to P,R; D to R`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let A=[a_("ij")] be a matrix of order 2 where a_("ij") in {-1, 0, 1} and adj. A=-A . If det. (A)=-1 , then the number of such matrices is ______ .

Let A_(i) denote a square matrix of order n xx n with every element a; Then,the sum of fall elements of the product matrix (A_(1)A_(2)...A_(n)) is

Knowledge Check

  • Consider a square matrix A or order 2 which has its elements as 0, 1, 2, 4. If the absolute value of |A| is least then, then absolute value of |adj(adj(A))| is equal to

    A
    0
    B
    2
    C
    1
    D
    4
  • Let A be a square matrix of order 3 so that sum of elements of each row is 1 . Then the sum elements of matrix A^(2) is

    A
    `1`
    B
    `3`
    C
    `0`
    D
    `6`
  • Let A be a square matrix of order 3 whose all entries are 1 and let I_(3) be the indentiy matrix of order 3. then the matrix A - 3I_(3) is

    A
    invertible
    B
    orthogonal
    C
    non-invertible
    D
    real skew symmetric matrix
  • Similar Questions

    Explore conceptually related problems

    Let A be a square matrix of order n(>2) such that each element in a row / column of A is 0; then det A=0.

    Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A^(2) , is 1, then the possible number of such matrices is , (1) 4 (2) 1 (3) 6 (4) 12

    If A is a square matrix of order n such that its elements are polynomila in x and its r-rows become identical for x = k, then

    An nxxn matrix is formed using 0,1 and -1 as its elements. The number of such matrices which are skew-symmetric, is

    A square matrix A has 9 elements. What is the possible order of A?